Abstract:
A system reads data from a magnetic storage media. A read head reads data from the magnetic storage media and produce an analog signal. A variable gain amplifier amplifies the analog signal. An offset adjust module substantially centers the amplified analog signal to a midscale. A Magneto Resistive Asymmetry (MRA) collection module MRA corrects the amplified analog signal. A Continuous Time Filter (CTF) compensation module processes the amplified analog signal. An Analog to Digital Converter (ADC) samples the amplified analog signal based upon a control signal to produce a digital signal. A Disk Lock Clock (DLC) system produces the control signal to the ADC. The control signal is representative of a frequency offset caused by at least one servo wedge rate error. A Finite Impulse Response (FIR) filter module filters the digital signal. A sequence detector processes the digital signal and detects a bit sequence from the digital signal.
Abstract:
A scheme in which a first decoder provides first decoding of a signal read from a disk. A second decoder, coupled to an output of the first decoder, combines with the first decoder to provide iterative decoding to recover data stored on the disk when in an iterative mode of operation. However, when in a non-iterative mode of operation, the output of the first decoder is coupled to an error correction code module to apply error correction code (ECC) to the output of the first decoder to recover data stored on the disk by non-iterative decoding.
Abstract:
Super block error correction code (ECC) adaptable to communication systems including hard disk drives (HDDs) and other memory storage devices. A means is presented by which a number of blocks of information can be organized, with a degree of ECC provided thereto, and transmitted via a signal into a communication channel. In some instances, the communication channel is coupled to a storage media as in the context of an HDD, and information is written to and read from the storage media via this communication channel (e.g., “read channel”). This means is particularly well suited to applications that provide large amounts of data via any one transmission (e.g., DVR/PVR (Digital/Personal Video Recorder)). A redundant block is generated using the information of each of a number of information blocks thereby provided extra ECC on a large portion of data, and that redundant block also undergoes ECC encoding.
Abstract:
A technique to sample a signal from a disk by using frequency and phase offset adjustment in a phase locked loop (PLL) timing recovery loop to sample read data from the disk, prior to a disk clocked clocking acquires a lock. Subsequently, sampling a signal from a disk by using only phase offset adjustment in the PLL timing recovery loop to sample read data from the disk after the disk clocked clocking acquires the lock. The sampled data is then error corrected by applying an error correction code (ECC).
Abstract:
Super block error correction code (ECC) adaptable to communication systems including hard disk drives (HDDs) and other memory storage devices. A means is presented by which a number of blocks of information can be organized, with a degree of ECC provided thereto, and transmitted via a signal into a communication channel. In some instances, the communication channel is coupled to a storage media as in the context of an HDD, and information is written to and read from the storage media via this communication channel (e.g., “read channel”). This means is particularly well suited to applications that provide large amounts of data via any one transmission (e.g., DVR/PVR (Digital/Personal Video Recorder)). A redundant block is generated using the information of each of a number of information blocks thereby provided extra ECC on a large portion of data, and that redundant block also undergoes ECC encoding.
Abstract:
A system reads data from a magnetic storage media. A read head reads data from the magnetic storage media and produce an analog signal. A variable gain amplifier amplifies the analog signal. An offset adjust module substantially centers the amplified analog signal to a midscale. A Magneto Resistive Asymmetry (MRA) collection module MRA corrects the amplified analog signal. A Continuous Time Filter (CTF) compensation module processes the amplified analog signal. An Analog to Digital Converter (ADC) samples the amplified analog signal based upon a control signal to produce a digital signal. A Disk Lock Clock (DLC) system produces the control signal to the ADC. The control signal is representative of a frequency offset caused by at least one servo wedge rate error. A Finite Impulse Response (FIR) filter module filters the digital signal. A sequence detector processes the digital signal and detects a bit sequence from the digital signal.
Abstract:
A scheme in which a first decoder provides first decoding of a signal read from a disk. A second decoder, coupled to an output of the first decoder, combines with the first decoder to provide iterative decoding to recover data stored on the disk when in an iterative mode of operation. However, when in a non-iterative mode of operation, the output of the first decoder is coupled to an error correction code module to apply error correction code (ECC) to the output of the first decoder to recover data stored on the disk by non-iterative decoding.
Abstract:
Super block error correction code (ECC) adaptable to communication systems including hard disk drives (HDDs) and other memory storage devices. A means is presented by which a number of blocks of information can be organized, with a degree of ECC provided thereto, and transmitted via a signal into a communication channel. In some instances, the communication channel is coupled to a storage media as in the context of an HDD, and information is written to and read from the storage media via this communication channel (e.g., “read channel”). This means is particularly well suited to applications that provide large amounts of data via any one transmission (e.g., DVR/PVR (Digital/Personal Video Recorder)). A redundant block is generated using the information of each of a number of information blocks thereby provided extra ECC on a large portion of data, and that redundant block also undergoes ECC encoding.
Abstract:
Timing recovery optimization using disk clock. A novel means is presented to perform and provide control of the sampling frequency of a signal that is read from a disk within a hard disk drive (HDD). Two separate, yet somewhat cooperating control loops are employed to provide feedback control of the sampling frequency of the signal that is read from disk. A timing recovery loop and a disk clock loop operate in conjunction with one another according to some desired manner (which can be predetermined or adaptive) to ensure that the sampling of the signal is performed to a very accurate degree. In one implementation, the timing recovery loop governs the sampling rate until the disk clock loop has locked, from which time either the disk clock loop govern the sampling or some combination of the signals provided from the two loops govern the sampling.
Abstract:
A system reads data from a magnetic storage media. A read head reads data from the magnetic storage media and produce an analog signal. A variable gain amplifier amplifies the analog signal. An offset adjust module substantially centers the amplified analog signal to a midscale. A Magneto Resistive Asymmetry (MRA) correction module MRA corrects the amplified analog signal. A Continuous Time Filter (CTF) compensation module processes the amplified analog signal. An Analog to Digital Converter (ADC) samples the amplified analog signal based upon a control signal to produce a digital signal. A Disk Lock Clock (DLC) system produces the control signal to the ADC. The control signal is representative of a frequency offset caused by at least one servo wedge rate error. A Finite Impulse Response (FIR) filter module filters the digital signal. A sequence detector processes the digital signal and detects a bit sequence from the digital signal.