Abstract:
The process relates to the use of any naphtha-range stream containing a portion of C8+ aromatics combined with benzene, toluene, and other non-aromatics in the same boiling range to produce toluene. By feeding the A8+ containing stream to a dealkylation/transalkylation/cracking reactor to increase the concentration of toluene in the stream, a more suitable feedstock for the methylation reaction can be produced. This stream can be obtained from a variety of sources, including the pygas stream from a steam cracker, “cat naphtha” from a fluid catalytic cracker, or the heavier portion of reformate.
Abstract:
In a process for the production of para-xylene, an aromatic feedstock comprising toluene and/or benzene is reacted with methanol under alkylation conditions in a reactor in the presence of a fluidized bed of solid catalyst particles to produce a vapor phase effluent comprising para-xylene, water, unreacted toluene and/or benzene and solid catalyst fines. The vapor phase effluent is contacted with a liquid hydrocarbon quench stream under conditions to condense a minor portion of the vapor phase effluent and produce a condensate which contains at least some of the catalyst fines and which is substantially free of an aqueous phase. The condensate containing said catalyst fines is then separated from the remainder of the vapor phase effluent.
Abstract:
In a process for the production of para-xylene, an aromatic feedstock comprising toluene and/or benzene is reacted with methanol under alkylation conditions in a reactor in the presence of a fluidized bed of solid catalyst particles to produce a vapor phase effluent comprising para-xylene, water, unreacted toluene and/or benzene and solid catalyst fines. The vapor phase effluent is contacted with a liquid hydrocarbon quench stream under conditions to condense a minor portion of the vapor phase effluent and produce a condensate which contains at least some of the catalyst fines and which is substantially free of an aqueous phase. The condensate containing said catalyst fines is then separated from the remainder of the vapor phase effluent.