Abstract:
A lateral-diffusion metal-oxide-semiconductor device includes a semiconductor substrate having at least a field oxide layer, a gate having a layout pattern of a racetrack shape formed on the substrate, a common source formed in the semiconductor substrate and enclosed by the gate, and a drain surrounding the gate and formed in the semiconductor substrate. The gate covers a portion of the field oxide layer. The common source includes a first doped region having a first conductive type and a plurality of islanding second doped regions having a second conductive type. The drain includes a third doped region having the first conductive type. The third doped region overlaps a portion of the field oxide layer and having an overlapping area between the third doped region and the field oxide layer.
Abstract:
A lateral-diffusion metal-oxide-semiconductor device includes a source in a racetrack shaped active area, a first field oxide region isolating and surrounding the racetrack shaped active area, a racetrack shaped gate surrounding the source, and a drain disposed at one side of the gate opposite to the source. The source includes a P+ doping region in a P well and an N+ doping region butting on the P+ doping region.
Abstract:
The present invention provides a lateral diffused metal-oxide-semiconductor device including a first doped region, a second doped region, a third doped region, a gate structure, and a contact metal. The first doped region and the third doped region have a first conductive type, and the second doped region has a second conductive type. The second doped region, which has a racetrack-shaped layout, is disposed in the first doped region, and has a long axis. The third doped region is disposed in the second doped region. The gate structure is disposed on the first doped region and the second doped region at a side of the third doped region. The contact metal is disposed on the first doped region at a side of the second doped region extending out along the long axis, and is in contact with the first doped region.
Abstract:
A high voltage semiconductor device is provided. A first-polarity buried layer is formed in the substrate. A first high voltage second-polarity well region is located over the first-polarity buried layer. A second-polarity base region is disposed within the first high voltage second-polarity well region. A source region is disposed within the second-polarity base region. A high voltage deep first-polarity well region is located over the first-polarity buried layer and closely around the first high voltage second-polarity well region. A first-polarity drift region is disposed within the high voltage deep first-polarity well region. A gate structure is disposed over the substrate. A second high voltage second-polarity well region is located over the first-polarity buried layer and closely around the high voltage deep first-polarity well region. A deep first-polarity well region is located over the first-polarity buried layer and closely around the second high voltage second-polarity well region.
Abstract:
The present invention provides a lateral diffused metal-oxide-semiconductor device including a first doped region, a second doped region, a third doped region, a gate structure, and a contact metal. The first doped region and the third doped region have a first conductive type, and the second doped region has a second conductive type. The second doped region, which has a racetrack-shaped layout, is disposed in the first doped region, and has a long axis. The third doped region is disposed in the second doped region. The gate structure is disposed on the first doped region and the second doped region at a side of the third doped region. The contact metal is disposed on the first doped region at a side of the second doped region extending out along the long axis, and is in contact with the first doped region.
Abstract:
A high voltage semiconductor device is provided. A first-polarity buried layer is formed in the substrate. A first high voltage second-polarity well region is located over the first-polarity buried layer. A second-polarity base region is disposed within the first high voltage second-polarity well region. A source region is disposed within the second-polarity base region. A high voltage deep first-polarity well region is located over the first-polarity buried layer and closely around the first high voltage second-polarity well region. A first-polarity drift region is disposed within the high voltage deep first-polarity well region. A gate structure is disposed over the substrate. A second high voltage second-polarity well region is located over the first-polarity buried layer and closely around the high voltage deep first-polarity well region. A deep first-polarity well region is located over the first-polarity buried layer and closely around the second high voltage second-polarity well region.
Abstract:
A lateral-diffused metal oxide semiconductor device (LDMOS) includes a substrate, a first deep well, at least a field oxide layer, a gate, a second deep well, a first dopant region, a drain and a common source. The substrate has the first deep well which is of a first conductive type. The gate is disposed on the substrate and covers a portion of the field oxide layer. The second deep well having a second conductive type is disposed in the substrate and next to the first deep well. The first dopant region having a second conductive type is disposed in the second deep well. The doping concentration of the first dopant region is higher than the doping concentration of the second deep well.
Abstract:
A lateral-diffused metal oxide semiconductor device (LDMOS) includes a substrate, a first deep well, at least a field oxide layer, a gate, a second deep well, a first dopant region, a drain and a common source. The substrate has the first deep well which is of a first conductive type. The gate is disposed on the substrate and covers a portion of the field oxide layer. The second deep well having a second conductive type is disposed in the substrate and next to the first deep well. The first dopant region having a second conductive type is disposed in the second deep well. The doping concentration of the first dopant region is higher than the doping concentration of the second deep well.
Abstract:
A lateral-diffusion metal-oxide-semiconductor device includes a semiconductor substrate having at least a field oxide layer, a gate having a layout pattern of a racetrack shape formed on the substrate, a common source formed in the semiconductor substrate and enclosed by the gate, and a drain surrounding the gate and formed in the semiconductor substrate. The gate covers a portion of the field oxide layer. The common source includes a first doped region having a first conductive type and a plurality of islanding second doped regions having a second conductive type. The drain includes a third doped region having the first conductive type. The third doped region overlaps a portion of the field oxide layer and having an overlapping area between the third doped region and the field oxide layer.