摘要:
A method for producing a metallic green compact 61 relates to a method for producing the green compact 61 having at least one recess 62, including a step of subjecting a raw material powder filled in a resin mold 1 to cold isostatic pressing while placing a resin core material 11 having a shape corresponding to the recess 62 at a position corresponding to the recess 62 in the resin mold 1.
摘要:
Provided is a method for manufacturing a porous metal body, which can manufacture a porous metal body with a suppressed variation in thickness in spite of using a molding plate having a relatively thin thickness multiple times. The method for manufacturing a porous metal body includes a plurality of steps including: a depositing step of depositing metal powder in a dry process onto a molding plate 100 made of carbon, the molding plate 100 having a thickness of 30 mm or less and an area of a surface for depositing the metal powder of 36 cm2 or more; after the depositing step, a sintering step of sintering the metal powder on the molding plate 100, wherein the plurality of steps are performed using the same molding plate 100, and wherein at least one step of the plurality of steps further includes, between the depositing step and the sintering step, a thickness adjusting step of adjusting a thickness of a deposited layer of the metal powder on the molding plate 100 while flattening the surface 105 of the molding plate 100.
摘要:
A method for producing a metallic green compact 61 relates to a method for producing the green compact 61 having at least one recess 62, including a step of subjecting a raw material powder filled in a resin mold 1 to cold isostatic pressing while placing a resin core material 11 having a shape corresponding to the recess 62 at a position corresponding to the recess 62 in the resin mold 1.
摘要:
A porous titanium-based sintered body, having a porosity of 45% to 65%, an average pore diameter of 5 μm to 15 μm, and a bending strength of 100 MPa or more. According to the present invention, a porous titanium-based sintered body having good pore diameter and porosity that are compatible with each other and having a high strength can be provided.
摘要:
A solid catalyst component for olefin polymerization is produced by bringing a vinylsilane compound (d) into contact with a catalyst component, the catalyst component being a powdery solid component obtained by bringing a magnesium compound (a), a titanium halide compound (b), and an electron donor compound (c) into contact with each other, the electron donor compound (c) being one or more compounds that do not include a phthalic ester structure, and include one or more groups selected from an ester group, a carbonate group, and an ether group, the vinylsilane compound (d) being brought into contact with the catalyst component in a 0.1 to 15-fold molar quantity with respect to the molar quantity (on a titanium atom basis) of the titanium halide compound (b) included in the catalyst component.
摘要:
A molten salt electrolyzer having a metal collection chamber, an electrolysis chamber, and two or more electrolytic cell units positioned in the electrolysis chamber. Each electrolytic cell unit has a cathode having an inner space in a prism form; at least one bipolar electrode in a rectangular cylinder form and disposed in the cathode inner space; and an anode in a prism form and disposed in an inner space of the bipolar electrode. At least part of individual planes forming an outer side of the bipolar electrode closest to the cathode faces a plane forming the prism-form inner space of the cathode. At least part of individual planes forming the inner side of the bipolar electrode closest to the anode faces a plane forming the prism of the anode. At least one plane of the cathode constitutes one plane of a cathode of another electrolytic cell unit.
摘要:
Provided is an alkali-metal titanate in which the content and adhesivity of the fibrous potassium titanate is significantly reduced.The alkali-metal titanate includes 0.5 mol to 2.2 mol of potassium oxide in terms of potassium atoms, 0.05 mol to 1.4 mol of sodium oxide in terms of sodium atoms, and 0 mol to 1.4 mol of lithium oxide in terms of lithium atoms relative to 1 mol of alkali-metal hexatitanate, in which a total content of potassium oxide in terms of potassium atoms, sodium oxide in terms of sodium atoms, and lithium oxide in terms of lithium atoms relative to 1 mol of alkali-metal hexatitanate is 1.8 mol to 2.3 mol; and the alkali-metal titanate has a single phase conversion ratio of 85% to 100%, a fiber ratio of 0% by volume to 10% by volume, and a moisture content of 0% by mass to 1.0% by mass.
摘要:
A solid catalyst component for olefin polymerization makes it possible to polymerize an olefin with high polymerization activity when used for an olefin polymerization catalyst, and produce an olefin polymer having a low fine powder content, a low coarse powder content, and a low volatile organic compound (VOC) content in high yield. The solid catalyst component for olefin polymerization is produced by suspending (a) a dialkoxymagnesium, and (b) at least one alcohol selected from ethanol, n-propanol, n-butanol, isopropanol, isobutanol, and t-butanol, in an inert organic solvent so that the total amount of the alcohol is 0.5 to 1.5 parts by mass based on 100 parts by mass of the dialkoxymagnesium, to prepare a suspension, and bringing (c) an internal electron donor and (d) a titanium halide compound into contact with the suspension.
摘要:
For aging deformation of a reaction vessel used for production of titanium sponge by the Kroll method, the deformation of the reaction vessel can be corrected to a desired deformation. The apparatus for correcting the deformation corrects by being inserted inside of the cylindrical deformation of the reaction vessel, the apparatus has multiple cylinder arms radially extendable to a circumference, a deformation-correcting head arranged on a top part of the cylinder arm, a hydraulic power unit connected to the cylinder arm and driving the deformation-correcting head, a detecting means for the stroke of the deformation-correcting head, and a measuring means for the pressing force against the reaction vessel. Furthermore, the method for correcting the deformation of the reaction vessel using the apparatus has a step of pressing the reaction vessel while adjusting stroke of the deformation-correcting head depending on an amount of deformation of the reaction vessel.