摘要:
An object of the present invention is to provide a method for producing a gel containing a nano-carbon material, which allows the gelling medium used to be selected from a wide range of substances, is applicable to other nano-carbon materials in addition to carbon nanotubes, and can be implemented in an extremely simple manner. A method for producing a gel containing a nano-carbon material of the present invention as a means for achieving the object is characterized in that a nano-carbon material is stir-mixed with a gelling medium that satisfies the following conditions (but is not an ionic liquid), the gelling medium being in a liquid or molten state: (1) the gelling medium is in a liquid state at ambient temperature or melts when heated; and (2) the gelling medium contains, in the molecule, two or more rings of at least one kind selected from optionally substituted aromatic hydrocarbon monocyclic ring and optionally substituted aromatic heteromonocyclic ring.
摘要:
An object of the present invention is to provide a method for producing a gel containing a nano-carbon material, which allows the gelling medium used to be selected from a wide range of substances, is applicable to other nano-carbon materials in addition to carbon nanotubes, and can be implemented in an extremely simple manner. A method for producing a gel containing a nano-carbon material of the present invention as a means for achieving the object is characterized in that a nano-carbon material is stir-mixed with a gelling medium that satisfies the following conditions (but is not an ionic liquid), the gelling medium being in a liquid or molten state: (1) the gelling medium is in a liquid state at ambient temperature or melts when heated; and (2) the gelling medium contains, in the molecule, two or more rings of at least one kind selected from optionally substituted aromatic hydrocarbon monocyclic ring and optionally substituted aromatic heteromonocyclic ring.
摘要:
A movable beam (182a) and a movable beam (182b) each having one end fixed to a frame portion (181) of a mirror substrate (108) are provided inside the frame portion (181). The movable beam (182a) and the movable beam (182b) each having one end fixed to a corresponding to one of two opposite inner sides of the frame portion (181) are aligned at a predetermined distance on the same line in the direction in which the two sides face each other. Each of the movable beam (182a) and the movable beam (182b) has the other end displaceable in the normal line direction of the mirror substrate (108) and therefore has a cantilever structure. A mirror (183) is arranged between the movable beam (182a) and the movable beam (182b) and connected to them via a pair of connectors (109a, 109b).
摘要:
A movable beam (182a) and a movable beam (182b) each having one end fixed to a frame portion (181) of a mirror substrate (108) are provided inside the frame portion (181). The movable beam (182a) and the movable beam (182b) each having one end fixed to a corresponding to one of two opposite inner sides of the frame portion (181) are aligned at a predetermined distance on the same line in the direction in which the two sides face each other. Each of the movable beam (182a) and the movable beam (182b) has the other end displaceable in the normal line direction of the mirror substrate (108) and therefore has a cantilever structure. A mirror (183) is arranged between the movable beam (182a) and the movable beam (182b) and connected to them via a pair of connectors (109a, 109b).
摘要:
An aqueous dispersion of improved stability, said dispersion consisting essentially of a mixture of(A) 10 to 90% by weight of an ethylene/.alpha.,.beta.-unsaturated carboxylic acid copolymer containing 12 to 20% by weight on an average of .alpha.,.beta.-unsaturated carboxylic acid units or the metal salt thereof, and(B) 90 to 10% by weight of an ethylene/.alpha.,.beta.-unsaturated carboxylic acid copolymer containing 5 to 12% by weight on an average of .alpha.,.beta.-unsaturated carboxylic acid units or the metal salt thereof,said mixture containing 8 to 20% by weight on an average, based on the weight of the mixture, of the .alpha.,.beta.-unsaturated carboxylic acid units, 30 to 80% of which units are present in the form of metal salts, and said mixture not containing more than 5% by weight, based on the weight of the mixture, of a fraction of the ethylene/.alpha.,.beta.-unsaturated carboxylic acid having an .alpha.,.beta.-unsaturated carboxylic acid unit content of less than 5% by weight or its salt, and more than 10% by weight, based on the weight of the mixture, of a fraction of the ethylene/.alpha.,.beta.-unsaturated carboxylic acid having an .alpha.,.beta.-unsaturated carboxylic acid unit content of more than 20% by weight or its salt.