摘要:
Reference phase variation values σk1 to σKn, each of which is a variation among a plurality of phases that occur during non-machining and phase variation values σ1 to σn, each of which is a variation among a plurality of phases that occur during machining are detected from measured vibration with the use of a chattering detector that is used to calculate phases of a desired number (n) of frequencies. If σKi−σi is smaller than a determination value TK, it is determined that chattering having a frequency i is occurring.
摘要翻译:参考相位变化值&sgr; k1至&sgr; Kn,它们各自是在非加工期间发生的多个相位之间的变化,并且相位变化值< 1〜&sgr; n,其各自是多个 通过使用用于计算所需数量(n)个频率的相位的抖动检测器,从测量的振动中检测在加工期间发生的相位。 如果&sgr; K i&sgr i i小于确定值TK,则确定发生具有频率i的抖动。
摘要:
An optimal process determining system executes a step of calculating a temporary process that includes information of a plurality of individual processes. According to an example, each process includes a tooling including of a tool, a holder, a tool projection length, and a sequence of the plurality of individual processes. A similarity between the toolings of two individual processes is calculated. In addition, a calculation is performed relating to a plurality of integrated processes for which the tooling of one of the individual processes having a high similarity is integrated into the tooling of the other one of the individual processes. In addition, an optimal process is determined from the plurality of integrated processes on the basis of an actual machining time in each of the integrated processes, a unit integration reduction time reduced as one of the toolings of the individual processes is integrated, and the number of the individual processes integrated.
摘要:
An optimal process determining system executes a step of calculating a temporary process that includes information of a plurality of individual processes. According to an example, each process includes a tooling including of a tool, a holder, a tool projection length, and a sequence of the plurality of individual processes. A similarity between the toolings of two individual processes is calculated. In addition, a calculation is performed relating to a plurality of integrated processes for which the tooling of one of the individual processes having a high similarity is integrated into the tooling of the other one of the individual processes. In addition, an optimal process is determined from the plurality of integrated processes on the basis of an actual machining time in each of the integrated processes, a unit integration reduction time reduced as one of the toolings of the individual processes is integrated, and the number of the individual processes integrated.
摘要:
A machined shape determining step of determining a machined shape machined by a basic tooling or basic tooling template of each machining efficiency group from a material shape (S19), a tooling determining step of determining an optimal tooling comprising a combination of a tool, a holder and a tool projection length on the basis of information of the tools and the holders, stored in a tool holder information storage unit, the combination having a maximum machining efficiency and being able to form the material shape into a corresponding one of the machined shapes without interfering with the machined shape (S20), a process candidate determining step of determining an optimal process candidate using the optimal tooling of each machining efficiency group (S21), and a process determining step of determining an optimal process on the basis of the optimal process candidate of each machining efficiency group (S10), are executed.
摘要:
It is an object of the present invention to provide a machining parameter optimizing apparatus deciding a tool axis attitude and a machining zone and deciding a tooling having high stiffness for any profile of a finished workpiece.A tool axis attitude deciding member 21 decides one or plural tool axis attitude. An interference dangerous zone deciding member 23 decides as an interference dangerous zone a zone possible to interfere between a tool or a tool holder and a workpiece during machining by the decided tool axis attitude. A machining simulation member 25 executes a machining simulation based on the interference dangerous zone by the decided tool axis attitude and generates the virtual tool holder in which there is no any interference, and also decides a machining zone in a way of avoiding the interference dangerous zone. A non-interference tooling deciding member 27 deciding the tooling included in a range of a profile of the virtual tool holder, the tooling is a combination of the tool and the tool holder having the highest stiffness.
摘要:
A shape measuring instrument is provided as being capable of measuring a surface shape of a target with a small contact force while changing the contact force. A measuring probe 32 is supported while a tilt θ is provided. A retracting force of the measuring force 32 is produced by the tilt θ, and thus, is obtained as mgsig θ which is much small as compared with a self weight “m”. On the other hand, biasing is provided with an extruding force Fc by means of an air cylinder 40. Thus, a contact force of the measuring probe 32 relevant to a work piece W is obtained as a difference between a measuring probe self weight tilt component mgsigθ and the extruding force Fc of the air cylinder 40 (F=Fc−mgsigθ), thus making it possible to reduce a contact force to be very small.
摘要:
Reference phase variation values σk1 to σKn, each of which is a variation among a plurality of phases that occur during non-machining and phase variation values σ1 to σn, each of which is a variation among a plurality of phases that occur during machining are detected from measured vibration with the use of a chattering detector that is used to calculate phases of a desired number (n) of frequencies. If σKi−σi is smaller than a determination value TK, it is determined that chattering having a frequency i is occurring.
摘要:
It is an object of the present invention to provide a machining parameter optimizing apparatus deciding a tool axis attitude and a machining zone and deciding a tooling having high stiffness for any profile of a finished workpiece. A tool axis attitude deciding member 21 decides one or plural tool axis attitude. An interference dangerous zone deciding member 23 decides as an interference dangerous zone a zone possible to interfere between a tool or a tool holder and a workpiece during machining by the decided tool axis attitude. A machining simulation member 25 executes a machining simulation based on the interference dangerous zone by the decided tool axis attitude and generates the virtual tool holder in which there is no any interference, and also decides a machining zone in a way of avoiding the interference dangerous zone. A non-interference tooling deciding member 27 deciding the tooling included in a range of a profile of the virtual tool holder, the tooling is a combination of the tool and the tool holder having the highest stiffness.
摘要:
A machined shape determining step of determining a machined shape machined by a basic tooling or basic tooling template of each machining efficiency group from a material shape (S19), a tooling determining step of determining an optimal tooling comprising a combination of a tool, a holder and a tool projection length on the basis of information of the tools and the holders, stored in a tool holder information storage unit, the combination having a maximum machining efficiency and being able to form the material shape into a corresponding one of the machined shapes without interfering with the machined shape (S20), a process candidate determining step of determining an optimal process candidate using the optimal tooling of each machining efficiency group (S21), and a process determining step of determining an optimal process on the basis of the optimal process candidate of each machining efficiency group (S10), are executed.
摘要:
A shape measuring instrument is provided as being capable of measuring a surface shape of a target with a small contact force while changing the contact force. A measuring probe 32 is supported while a tilt θ is provided. A retracting force of the measuring force 32 is produced by the tilt θ, and thus, is obtained as mgsig θ which is much small as compared with a self weight “m”. On the other hand, biasing is provided with an extruding force Fc by means of an air cylinder 40. Thus, a contact force of the measuring probe 32 relevant to a work piece W is obtained as a difference between a measuring probe self weight tilt component mgsigθ and the extruding force Fc of the air cylinder 40 (F=Fc−mgsigθ), thus making it possible to reduce a contact force to be very small.