Abstract:
It is provided that a machining conditions setting system and a machining conditions setting method with which it is possible to select a machining condition for machining according to a target degree of hardness and obtain a predetermined degree of hardness by performing only the machining. The machining conditions setting system includes: a machining conditions database that, by determining in advance a relationship between the machining condition and a degree of hardness of the workpiece machined under the machining condition, stores the machining condition corresponding to the material of the workpiece and a range of degree of hardness for machining; and machining conditions selection means into which a material of a workpiece and a target degree of hardness are input, and which outputs a machining condition under which machining with the target degree of hardness can be performed, referring to the machining conditions database.
Abstract:
Computer-enabled methods and devices allow for the ready set-up for machine instruction generation by addressing various combinations of machining patterns and tool axis orientations via the selection or designation of a machining pattern and the selection or designation of a tool axis orientation via exemplary separate menus of a user interface.
Abstract:
To a machining shape database, machining shapes are registered. A machining shape recognition function makes a comparison between CAD data from a CAD and the registered machining shapes, and extracts a matching registered machining shape. A machining method database stores information required to identify the machining method of a machining shape corresponding to the registered machining shape. Information about the machining method of the machining shape extracted by the machining shape recognition function is extracted by a machining step determination function from the machining method database, and machining methods are arranged in suitable order, whereby a machining step is generated.
Abstract:
A system and method is disclosed for centralizing knowledge and improving programming for manufacturing a part. An embodiment includes a method for manufacturing the part. First, a model of the part is received. Next, a predetermined rule is retrieved from a computer readable medium having a plurality of predetermined rules. A feature of the geometric model is selected by evaluating the retrieved predetermined rule and a process is determined that is associated with the feature. Based on the process, computer code is generated to manufacture the part on a computer controlled machine.
Abstract:
A method and apparatus able to quickly and accurately automatically produce machining programs for complicated shapes of products without being affected by the level of knowledge or experience of the operator. A cutting-condition determination processing unit (20) of an automatic programming apparatus (10) specifies required standard cutting condition data from the type of material and the types of processes designated by an input unit (12) in a cutting condition data table (24) stored in a storage unit (18), specifies the tool data corresponding to the types of tools designated by the input unit in the tool data table (26) stored in the storage unit, and determines the cutting conditions relating to the type of material and the tools from the standard cutting condition data and the tool data. A program-generation processing unit (22) specifies a program-generation algorithm corresponding to the designated process in an algorithm table (28) stored in the storage unit and generates machining programs based on the determined cutting conditions in accordance with the program-generation algorithm.
Abstract:
A system and method is disclosed for centralizing knowledge and improving programming for manufacturing a part. An embodiment includes a method for manufacturing the part. First, a model of the part is received. Next, a predetermined rule is retrieved from a computer readable medium having a plurality of predetermined rules. A feature of the geometric model is selected by evaluating the retrieved predetermined rule and a process is determined that is associated with the feature. Based on the process, computer code is generated to manufacture the part on a computer controlled machine.
Abstract:
A method and an apparatus for performing process control at an interconnect level. A process step upon a workpiece is performed. Manufacturing data relating to an interconnect location on the workpiece is acquired. An interconnect characteristic control process is performed based upon the manufacturing data. The interconnect characteristic control process includes controlling a process relating to a structure associated with the interconnect location on the workpiece to control a characteristic relating to the interconnect location.
Abstract:
A system and method for trim optimization comprising a database. The database comprises information concerning widths of specific machines of manufacturers, widths of the orders and remaining space required to be filled on the machines at a given time. The database further comprises specifications of products to be manufactured on the specific machines and specifications of the orders.
Abstract:
A shape data creating apparatus for creating shape data by utilizing a database has an operation measures database. The operation measures database stores attributes of working accuracy, reliability and working cost in a unit of operation of working or assembling. A shape operation measures selecting unit selects a measure used for practical work from a plurality of measure possibly used for working and assembling. A totaling unit calculates workability, assembling efficiency and cost of a shape when working measure and assembling measure selected by consulting attributes stored in the operation measures database are used. A process database stores operation processes of working and assembling. Addition, deletion and order change in an operation process are processed by a shape operation process editing unit.
Abstract:
The invention relates to a method for automatically preparing a working plan for producing a product comprised of several components, e.g. a wire harness. The inventive method involves the following steps: a) providing a product data model of the product, in which each component is described by a partial data set containing a classification characteristic; b) preparing a database, whereby the data sets contained therein are divided into classes according to the classification characteristic, whereby each class contains one or more selection rules, whereby a manufacturing partial process provided with an index is assigned to each selection rule, and each manufacturing partial process contains one or more working cycles; c) automatically selecting the class applying to the component by using the classification characteristic; d) automatically selecting a manufacturing partial process suited for producing the component by using the selection rule; e) automatically establishing the sequence of the manufacturing partial processes by using the respective index.