摘要:
A method for producing a thermoelectric object for a thermoelectric conversion device is provided. A starting material which contains elements in the ratio of a half-Heusler alloy is melted and then cast form an ingot. The ingot is heat-treated for 12 to 24 hours at a temperature of 1000° C. to 1200° C. The homogenised ingot is crushed and ground to provide a powder. The powder is cold-pressed and sintered for 0.5 to 24 hours at a temperature of 1000° C. to 1500° C.
摘要:
The current sensor arrangement according to the compensation principle has a primary conductor, designed to generate a primary magnetic field dependent on a current to be measured flowing through it, a first secondary winding, designed to generate a first secondary magnetic field dependent on a first compensation current flowing through said winding, a second secondary winding designed to generate a second secondary magnetic field dependent on a second compensation current flowing through said winding, a magnetic field sensor designed to generate a measurement signal that represents a magnetic field detected by it; a magnetic core of soft magnetic material designed and arranged to magnetically interconnect a primary conductor, a first seconding winding, a second secondary winding, and a magnetic field sensor; a first evaluation circuit, downstream from the magnetic field sensor and upstream from the first secondary winding, and a second evaluation circuit, upstream from the second secondary winding.
摘要:
A method for classifying articles comprising magnetocalorically active material according to magnetic transition temperature comprises providing a source of articles to be classified, the source comprising articles comprising magnetocalorically active materials having differing magnetic transition temperatures, sequentially applying a magnetic field at differing temperatures to the source, the magnetic field being sufficient to exert a magnetic force on the source that is greater than the inertia of a fraction of the articles causing the fraction of the articles to move and produce an article fraction, and collecting the article fraction at each temperature to provide a plurality of separate article fractions of differing magnetic transition temperature, thus classifying the articles comprising magnetocalorically active material according to magnetic transition temperature.
摘要:
The current sensor arrangement according to the compensation principle has a primary conductor, designed to generate a primary magnetic field dependent on a current to be measured flowing through it, a first secondary winding, designed to generate a first secondary magnetic field dependent on a first compensation current flowing through said winding, a second secondary winding designed to generate a second secondary magnetic field dependent on a second compensation current flowing through said winding, a magnetic field sensor designed to generate a measurement signal that represents a magnetic field detected by it; a magnetic core of soft magnetic material designed and arranged to magnetically interconnect a primary conductor, a first seconding winding, a second secondary winding, and a magnetic field sensor; a first evaluation circuit, downstream from the magnetic field sensor and upstream from the first secondary winding, and designed to generate a first compensation current corresponding to the measurement signal of the magnetic field sensor and feed the first secondary winding; and a second evaluation circuit, upstream from the second secondary winding and designed to generate a second compensation current corresponding to the first compensation current and feed the secondary winding. The magnetic field detected by the magnetic field sensor is the magnetic field in the magnetic core resulting from the superposition of the primary magnetic field, the first secondary magnetic field, and the second secondary magnetic field. The first compensation current and the second compensation current are adjusted by the first evaluation circuit and the second evaluation circuit such that the resulting magnetic field detected by the magnetic field sensor becomes zero. The second compensation current is greater or smaller than the first compensation current and represents the current to be measured flowing in the primary conductor.
摘要:
A method for classifying articles comprising magnetocalorically active material according to magnetic transition temperature comprises providing a source of articles to be classified, the source comprising articles comprising magnetocalorically active materials having differing magnetic transition temperatures, sequentially applying a magnetic field at differing temperatures to the source, the magnetic field being sufficient to exert a magnetic force on the source that is greater than the inertia of a fraction of the articles causing the fraction of the articles to move and produce an article fraction, and collecting the article fraction at each temperature to provide a plurality of separate article fractions of differing magnetic transition temperature, thus classifying the articles comprising magnetocalorically active material according to magnetic transition temperature.
摘要:
A method producing soft magnetic strip material for roll tape-wound cores with the following steps: preparing a band-shaped material, applying a heat-treatment temperature to the band-shaped material, and applying a tensile force to the temperature-applied band-shaped material in one longitudinal direction of the band-shaped material in order to produce a tensile stress in the band-shaped material, to produce the soft magnetic strip material from the band-shaped material, the method, moreover, comprising determining at least one magnetic measurement value of the soft magnetic strip material that has been produced and controlling the tensile force for setting the tensile stress in a reaction to the determined magnetic measurement value. Furthermore, a device for carrying out the method and a roll tape-wound core produced by means of the method are made available.
摘要:
A method for producing a thermoelectric object for a thermoelectric conversion device is provided. A starting material which contains elements in the ratio of a half-Heusler alloy is melted and then cast form an ingot. The ingot is heat-treated for 12 to 24 hours at a temperature of 1000° C. to 1200° C. The homogenised ingot is crushed and ground to provide a powder. The powder is cold-pressed and sintered for 0.5 to 24 hours at a temperature of 1000° C. to 1500° C.