Abstract:
Forces and moments are detected in a distinguished manner by a simple structure. An outer box-like structure formed of a metal is set on top of an insulating substrate and an insulating inner box-like structure is contained in the interior. Five electrodes E1 to E5 are positioned on a top plate of the inner box-like structure. Four electrodes E6 to E9 are positioned on the four side surfaces of the inner box-like structure. Capacitance elements C1 to C5 are arranged by electrodes E1 to E5 and a top plate of the outer box-like structure and capacitance elements C6 to C9 are arranged by electrodes E6 to E9 and side plates of the outer box-like structure. A force Fx in the X-axis direction is detected by means of the capacitance difference between C6 and C7, a force Fy in the Y-axis direction is detected by means of the capacitance difference between C8 and C9, a force Fz in the Z-axis direction is detected by means of the capacitance of C5, a moment My about the Y-axis is detected by means of the capacitance difference between C1 and C2, and a moment Mx about the X-axis is detected by means of the capacitance difference between C3 and C4.
Abstract:
The invention provides a force detector in which power consumption is suppressed. Four electrodes E11 through E14 are formed on a substrate, and an elastic deformable body formed of a rubber film is disposed thereon. A conductive coating is applied on the lower surface of the elastic deformable body to provide a displacing conductive layer 26. Four capacitance elements C11 through C14 are comprised by the electrodes E11 through E14 and the displacing conductive layer 26 opposed to the electrodes. The capacitance values thereof are converted into voltage values V11 through V14 by C/V converter circuit 50, and based on operation by signal processing circuit 60, an external force applied to the elastic deformable body is detected. A pair of contacting electrodes E15 and E16 are formed on the substrate, and when an external force with a predetermined strength or more is applied, the elastic deformable body deforms, and the displacing conductive layer 26 comes into contact with both electrodes E15 and E16, simultaneously. The potential of the electrode E16 is taken-in from the terminal T5, and when said potential is Vcc, the C/V converter circuit 50 is operated in a standby mode with less power consumption, and when said potential is GND, the circuit is operated in a normal mode.
Abstract:
A power generating element according to the present invention includes a pedestal formed in a frame shape in plan view, a vibrating body provided inside the pedestal, at least three first bridge supporting portions, each of the first bridge supporting portions extending along a first extending axis and configured to arrange the vibrating body to be supported on a pedestal, and a charge generating element. The first extending axes of a pair of the first bridge supporting portions adjacent to each other form a predetermined angle in a circumferential direction with the vibrating body defined as a center in plan view. At least one first electrode layer of the charge generating element is arranged on each of the first bridge supporting portions.
Abstract:
A plate-like supporting body (200) is arranged below a plate-like force receiving body (100) and a deformation body (300) is connected between them. The deformation body (300) is provided with an elastically deformed portion (310) arranged along a connection channel (R1) which connects a first force receiving point (P1) with a second force receiving point (P2), a first base portion (320) and a second base portion (330) which support the elastically deformed portion (310) from below. The upper end of the first base portion (320) supports the vicinity of a first relay point (m1) on the connection channel (R1) so as to sway freely, and the upper end of the second base portion (330) supports the vicinity of a second relay point (m2) on the connection channel (R1) so as to sway freely. An arm-like member (312) which couples a pair of relay points (m1, m2) is used to lower the detection sensitivity of moment around an origin (O) which is exerted on the force receiving body (100), thereby easily adjusting the balance of detection sensitivity between moment and force.
Abstract:
A cylindrical annular detector is disposed at the periphery of the columnar body fixed at a central part of the upper surface of a supporting substrate. A space between the columnar body and the annular detector is connected by a thin flexible connection member (diaphragm). A washer-shaped insulation substrate is disposed on the upper surface of the supporting substrate, individual fixed electrodes are formed on the upper surface thereof, and they constitute capacitive elements together with a displacement electrode which is composed of the lower surface of the annular detector. Upon exertion of an external force on the annular detector, the flexible connection member deflects to cause displacement, which is detected as change in capacitance value of the capacitive element.
Abstract:
A base end of a flexible plate-like structure body (111) having a first attribute is fixed to a pedestal (310) and a leading end thereof is connected to a connector between different attributes (112). Base end of a flexible plate-like structure body (113, 114) having a second attribute is connected to the connector between different attributes (112) and leading end thereof is given as free ends. Weight body (211, 212, 213) is connected to the lower surface of the connector between different attributes (112) and the leading-end lower surface of the plate-like structure body (113, 114) having the second attribute. When vibration energy is applied to the pedestal (310), the weight body (211, 212, 213) undergoes vibration, resulting in deformation of each of the plate-like structure bodies (111, 113, 114). The deformation energy is taken out by a charge generating element (400) such as a piezoelectric element to generate electric power. The plate-like structure body (111) having the first attribute extends in a positive direction of an Y axis, and the plate-like structure body (113, 114) having the second attribute extend in a negative direction of the Y axis. Therefore, a plurality of resonance systems different in resonance frequency exists concurrently along the same axis, thereby widening a frequency band capable of generating electric power.
Abstract:
A power generating element according to the present invention includes a pedestal formed in a frame shape in plan view, a vibrating body provided inside the pedestal, at least three first bridge supporting portions, each of the first bridge supporting portions extending along a first extending axis and configured to arrange the vibrating body to be supported on a pedestal, and a charge generating element. The first extending axes of a pair of the first bridge supporting portions adjacent to each other form a predetermined angle in a circumferential direction with the vibrating body defined as a center in plan view. At least one first electrode layer of the charge generating element is arranged on each of the first bridge supporting portions.
Abstract:
The invention provides a force detector in which power consumption is suppressed. Four electrodes E11 through E14 are formed on a substrate, and an elastic deformable body formed of a rubber film is disposed thereon. A conductive coating is applied on the lower surface of the elastic deformable body to provide a displacing conductive layer 26. Four capacitance elements C11 through C14 are comprised by the electrodes E11 through E14 and the displacing conductive layer 26 opposed to the electrodes. The capacitance values thereof are converted into voltage values V11 through V14 by C/V converter circuit 50, and based on operation by signal processing circuit 60, an external force applied to the elastic deformable body is detected. A pair of contacting electrodes E15 and E16 are formed on the substrate, and when an external force with a predetermined strength or more is applied, the elastic deformable body deforms, and the displacing conductive layer 26 comes into contact with both electrodes E15 and E16, simultaneously. The potential of the electrode E16 is taken-in from the terminal T5, and when said potential is Vcc, the C/V converter circuit 50 is operated in a standby mode with less power consumption, and when said potential is GND, the circuit is operated in a normal mode.
Abstract:
An efficient rotational-operation-quantity input device suitable to be built into a small electrical appliance is provided. An operational force applied by an operator is input in time series as a coordinate value (x, y) in an XY two-dimensional rectangular coordinate system by a two-dimensional force sensor 100, and is converted into a coordinate value (r, null) by a polar-coordinate converting section 200. When a value r of the coordinate value (r, null) obtained in time series is larger than a predetermined threshold rt, an operation-quantity recognizing section 300 recognizes the coordinate value (r, null) as a significant coordinate value, and, when the value null generates a variation nullnull exceeding a predetermined threshold nullt with respect to a value nullnullbeforenull immediately therebefore during a period during which a significant coordinate value (r, null) is obtained continuously, it recognizes a value corresponding to the variation nullnull as an operation quantity indicating a rotation.
Abstract:
An intermediate displacement board (120) composed of a metal plate is arranged on a printed circuit board (110) having electrode patterns (E1-E7) and then a strain generative body (130) composed of silicon rubber is arranged on top thereof. Then, the arrangement is fixed to the printed circuit board (110) with attachments (140). Depressing a displacement portion (133) causes a connecting portion (132) to be deflected and an electrode (F0) to be brought into contact with the electrodes (E1, E2) to make them conductive, thereby allowing the pushbutton switch to be turned ON. Depressing further the displacement portion (133) causes an elastic deformation portion (134) to be elastically deformed and crushed and the intermediate displacement board (120) to be pushed downward. The capacitance of capacitors (C3-C7), which are constituted by the electrodes (E3-E7) and the intermediate displacement board (120), are varied according to the depression of the intermediate displacement board (120). By detecting the variation in capacitance, it becomes possible to detect three-dimensional components of an applied force.