摘要:
A hand-held drive-in tool for driving fastening elements in a workpiece and including a guide (12), a drive-in ram (13) displaceable in the guide (12) for driving a fastening element in, a drive-in unit (30) for driving the drive-in ram (13) and including at least one first drive spring (31) and at least one second drive spring (32) having respectively, opposite first and a second expansion directions (37, 38), and a tensioning device for preloading the drive-in ram (13) and the first drive spring (31).
摘要:
A method for anchoring a fastening element to a flat steel member, in which the fastening element is driven into a blind hole previously drilled in the steel member is disclosed. Initially, in a first step of the method, a metal disk is adhesively bonded to the steel member. In a subsequent second step, a blind hole is drilled into the stack formed by the metal disk and the steel member and, in a subsequent third step, the fastening element is driven into the pre-drilled blind hole in the stack using a hand-held drive-in tool.
摘要:
A setting tool for driving fastening elements in a constructional component includes a setting mechanism located in the tool housing (21) and including a drive piston (7) for driving a fastening element (6) in the constructional component (1), a reading device (10) for acquiring information containing in a coding (8) provided on a magazine strip (27) containing the fastening element (6), and control device (15) communicating with the reading device (10) for adjusting setting parameters for a setting process dependent on data acquired by the reading device (10) upon reading out the coding (8).
摘要:
A combustion-engined setting tool for driving fastening elements in a constructional components includes at least one mechanically controlled valve (14) arranged in a feeding conduit (12) that connects a reservoir (11) with an oxidation agent or fuel with the tool combustion chamber (13), a switch element (15) for time-delayed opening of the mechanically controlled valve (14) upon being actuated, and at least one normally open, electronically controlled valve (24) likewise arranged in the feeding conduit.
摘要:
A hand-held drive-in power tool for driving-in fastening elements includes a drive-in ram (13) displaceably arranged in a guide (12), a drive (30) for driving the drive-in ram (13) and having at least one driving spring member (31) for displacing the drive-in ram (13) and formed of a fiber-reinforced plastic material, and a device (70) for preloading the driving spring member (31).
摘要:
A hand-held drive-in tool (10) has a trigger switch (19) for triggering a drive-in process by drive unit (30) that drives a drive-in ram (13), a press-on feeler (18) which is arranged so as to be displaceable at a muzzle (16), which can detect that the drive-in tool pressed against a workpiece, and which prevents the actuation of a drive-in process in its initial position (41) and enables actuation of its drive-in process in its switching position (43), a component feeler (17) displaceably arranged at the muzzle (16) and capable of being actuated independently from the press-on feeler (18) and preventing actuation of a drive-in process in its initial position (42) and enabling the actuation of the drive-in process in its switching position (44), the component feeler (17) detecting fitting of an auxiliary constructional component (110) to the muzzle (16), with a drive-in process being initiated by the trigger switch (19) only when the component feeler (17) and the press-on feeler (18) are both in their respective switching positions (43, 44).
摘要:
The present invention relates to a combustion-engined setting tool for driving fastening elements such as nails, bolts, pins and the like in a constructional component and including a fuel source (11), a fuel conduit (12), from the fuel source (11) to the combustion chamber (13), at least one metering device (30) arranged in the fuel conduit (12) between the fuel source (11) and the combustion chamber (13). The setting tool further includes a control device (20) for operating the metering device. The metering device (30) is formed for metering out fuel in form of a n-number of discrete separate portions, with a volume of separate portions being preset and remaining constant.
摘要:
A setting tool for driving fastening elements in a constructional component includes a setting mechanism located in the tool housing (21) and including a drive piston (7) for driving a fastening element (6) in the constructional component (1), a reading device (10) for acquiring information containing in a coding (8) provided on a magazine strip (27) containing the fastening element (6), and control device (15) communicating with the reading device (10) for adjusting setting parameters for a setting process dependent on data acquired by the reading device (10) upon reading out the coding (8).
摘要:
A hand-held drive-in power tool for driving-in fastening elements includes a drive-in ram (13) displaceably arranged in a guide (12), a drive (30) for driving the drive-in ram (13) and having at least one driving spring member (31) for displacing the drive-in ram (13) and formed of a fiber-reinforced plastic material, and a device (70) for preloading the driving spring member (31).
摘要:
A method and the device for fiber-optic measurement of the absolute value of the pretensioning in a highly loaded mechanical structural component part are based on the measurement of the phase displacement of a light wave caused by the strain-induced birefringence in a single-mode light waveguide 4 which is embedded between two metallic disks or washers 3a, 3b. Since the measurement results are ambiguous modulo-2.pi., serial or simultaneous measurement with two light wavelengths .lambda..sub.1, .lambda..sub.2 is used according to a first method variant of the invention. The quantity of 2.pi. periods can be unequivocally determined within a predetermined measuring range by means of comparing the two measurement results. The evaluation is preferably effected according to a quadrature or phase step method, known per se. According to second method variant, the light waveguide 4 is irradiated with polarized white light. The phase difference of the two linear modes due to the influence of force on the structural component part is compensated for in a compensation device 20. The control signal required for the compensation of the path difference is evaluated as a measurement for the force. The compensation method has the advantage that no monochromatic light sources are required.