摘要:
A standoff compensation system is disclosed for use in an LWD system implementing gamma density and/or neutron porosity measurements. An acoustic transducer is provided to measure the standoff distance between the logging tool and the borehole wall. The present invention includes a downhole processor for determining a weighting factor for the density and/or porosity measurements based upon the measured standoff distance. The weighting factor can either be calculated by the downhole processor according to a predetermined weighting function, or can be retrieved from a pre-calculated look-up table in ROM. The processor then multiplies the weighting factor by the count data from the sensor to determine a weighted count value. The weighted count values are accumulated during an averaging period and normalized, so that a single normalized count value can be generated and either stored in downhole memory, used immediately, or transmitted by telemetry to the surface.
摘要:
Earth formations surrounding a well borehole are bombarded with high energy neutrons which react with chemical elements in the formation components, giving rise to gamma radiation. The gamma radiation is detected by two separate, spaced detectors from which well logs are obtained indicating a ratio of the relative presence of silicon to oxygen in the formations.
摘要:
An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MEV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity.
摘要:
An illustrative embodiment of the invention includes methods for linearizing the gain of borehole gamma ray energy measurement apparatus. A known energy peak (or peaks) which is prominent in the gamma ray energy spectra of borehole measurements is monitored and any drift in its apparent location in the energy spectrum is used to generate an error voltage. The error voltage is applied in an inverse feedback manner to control the gain of system amplifiers to cancel the drift.
摘要:
Statistical variations in nuclear borehole logs are reduced using digital moving average data processing while maintaining responsiveness to formation changes, by transitioning through a combination of long and short filtered data as a function of the statistical variation of the differences of the long and short derived averages.
摘要:
A method of logging earth formations to ascertain relative elemental abundancies of potassium (K), uranium (U) and thorium (T) is disclosed. A natural gamma ray spectrum of an unknown borehole is compared with individual standard gamma ray spectra of potassium, uranium and thorium in at least four energy ranges or bands. Decay peaks of the three elements are encompassed by three of the energy bands and at least one other energy band is used to monitor the changes in shape of the unknown spectrum caused by borehole conditions differing from that of the standard or calibration boreholes. A function derived from the gamma ray count rates in the four bands is used to compensate the elemental abundancies of the three elements to be detected in the unknown spectrum for the effects of differing borehole conditions in the unknown borehole from the standard borehole conditions.
摘要:
Compensation of photoelectric absorption measurements for borehole effects during nuclear logging of downhole earth formations is accomplished by detecting low energy gamma radiations entering two detectors in the logging tool along paths having substantially constant formation components but varying borehole components.
摘要:
This invention relates to an improved method for determining the oil saturation of subsurface earth formations in the vicinity of a well borehole. High energy neutrons irradiate the subsurface earth formations and gamma rays caused by inelastic scatter with the subsurface earth formation constituent materials are measured. For a chosen borehole depth, gamma ray logs are taken in different situations: first, with the formation fluid water and oil mixture in an undisturbed state; second, after flushing the formation with alcohol to displace the formation water and oil mixture; and, finally, after flushing the alcohol from the formation with water to obtain a measurement with no oil in the formation. The gamma ray measurements obtained are then used to determine the oil saturation without requiring knowledge of the porosity of the earth formation, borehole conditions or formation type. When the original oil content of the formation is at a naturally flushed, or residual, oil saturation, the present invention may be used to determine the residual oil saturation.
摘要:
Background corrected inelastic neutron scattering gamma ray counts for selected energy regions of the gamma ray spectrum corresponding to calcium and silicon are compared with thermal neutron capture gamma ray counts for selected energy regions of the gamma ray spectrum. These data are functionally related to chlorine presence and are used to derive an estimate of the salinity of earth formations. The inelastic scattering and thermal neutron capture gamma ray data are separated from each other by the use of a pulse neutron source and time gating techniques.
摘要:
A system for logging earth formations traversed by a borehole wherein a high energy pulsed neutron source (14 MeV) repetitively irradiates earth formations. Two time gates operated after each neutron pulse are provided for detecting count rates from which the decay time and the macroscopic capture cross-section .SIGMA. can be determined. Background gate means are also provided to eliminate the effects of background and detector radiation. In the detection system, output pulses whose voltage level is proportional to the energy detected are produced. A cut-off voltage level is set at approximately 0.8 MeV, which is above the energy of gamma rays produced following neutron capture by the element Boron and below the energy of most gamma rays produced following capture by all other significant formation elements. By comparison of the count rates (obtained by summing these voltage pulses) in a Boron containing formation with macroscopic capture cross-section .SIGMA. to the count rate in an unborated formation having the same .SIGMA. value, the concentration of boron can be determined and plotted as a function of depth.