摘要:
A peak to average power ratio signal is generated from a first mapping function that selects the peak to average power ratio signal that corresponds to the data rate or data format of the signal to be transmitted. The selected peak to average power ratio signal is summed with a desired average transmit power signal. The resulting summation signal is input to a second effectively continuously valued mapping function comprising a table that has a plurality of power amplifier control signal values each with a corresponding peak transmit power. Each peak transmit power signal value results in a power amplifier control signal value that achieves the best possible transmitter power efficiency while still meeting out of band spurious emissions and waveform quality requirements. The summation signal value maps to one of the power amplifier control signal value that is then used to adjust a parameter such as bias of the power amplifier.
摘要:
Various embodiments described herein relate to a power management block and an amplification block used in the transmitter of a communication subsystem. The power management block provides improved control for the gain control signal provided to a pre-amplifier and the supply voltage provided to a power amplifier which are both in the amplification block. The power expended by the power amplifier is optimized by employing a continuous control method in which one or more feedback loops are employed to take into account various characteristics of the transmitter components and control values.
摘要:
A mobile wireless communications device may include an antenna, a wireless radio frequency (RF) receiver, a wireless RF transmitter, and a duplexer connecting the wireless RF receiver and the wireless RF transmitter to the antenna. More particularly, the wireless RF receiver may include a low noise amplifier (LNA) connected to the duplexer, a first receive signal chain for wireless communications signals having a first signal type downstream from the LNA, a second receive signal chain for wireless communications signals having a second signal type different than the first frequency band downstream from the LNA, and a power divider connecting the LNA to the first and second receive signal chains.
摘要:
A peak to average power ratio signal is generated from a first mapping function that selects the peak to average power ratio signal that corresponds to the data rate or data format of the signal to be transmitted. The selected peak to average power ratio signal is summed with a desired average transmit power signal. The resulting summation signal is input to a second effectively continuously valued mapping function comprising a table that has a plurality of power amplifier control signal values each with a corresponding peak transmit power. Each peak transmit power signal value results in a power amplifier control signal value that achieves the best possible transmitter power efficiency while still meeting out of band spurious emissions and waveform quality requirements. The summation signal value maps to one of the power amplifier control signal value that is then used to adjust a parameter such as bias of the power amplifier.
摘要:
A peak to average power ratio signal is generated from a first mapping function that selects the peak to average power ratio signal that corresponds to the data rate or data format of the signal to be transmitted. The selected peak to average power ratio signal is summed with a desired average transmit power signal. The resulting summation signal is input to a second effectively continuously valued mapping function comprising a table that has a plurality of power amplifier control signal values each with a corresponding peak transmit power. Each peak transmit power signal value results in a power amplifier control signal value that achieves the best possible transmitter power efficiency while still meeting out of band spurious emissions and waveform quality requirements. The summation signal value maps to one of the power amplifier control signal value that is then used to adjust a parameter such as bias of the power amplifier.
摘要:
A power management system and method for a wireless communication device generates an average desired transmit power signal based on at least one of a received signal strength indicator signal and a power control instruction signal from a base station. A power supply level adjustment signal is generated based on the data parameters of an outgoing data stream and at least one environmental information signal. A combination of the power supply level adjustment signal and the average desired transmit power or a gain control signal and an altered version of the power supply level adjustment signal is used to generate a variable power supply signal that is provided to an output amplifier block for sufficiently generating outgoing wireless device radio signals while reducing power loss in the output amplifier block.
摘要:
A communications subsystem for a wireless device for correcting errors in a reference frequency signal. The communications subsystem comprises a frequency generator for generating the reference frequency signal and a closed loop reference frequency correction module that generates a reference frequency adjustment signal for correcting the reference frequency signal when the communications subsystem operates in closed loop mode. The subsystem further includes an open loop frequency correction means that that samples values of the reference frequency adjustment signal during the closed loop mode and generates a frequency correction signal for correcting the reference frequency signal when the communications subsystem operates in a mode other than closed loop mode.
摘要:
A peak to average power ratio signal is generated from a first mapping function that selects the peak to average power ratio signal that corresponds to the data rate or data format of the signal to be transmitted. The selected peak to average power ratio signal is summed with a desired average transmit power signal. The resulting summation signal is input to a second effectively continuously valued mapping function comprising a table that has a plurality of power amplifier control signal values each with a corresponding peak transmit power. Each peak transmit power signal value results in a power amplifier control signal value that achieves the best possible transmitter power efficiency while still meeting out of band spurious emissions and waveform quality requirements. The summation signal value maps to one of the power amplifier control signal value that is then used to adjust a parameter such as bias of the power amplifier.
摘要:
A pre-processing stage is provided for a receiver of a wireless device. The pre-processing stage includes an amplifier that receives signals of interest and unwanted signals and produces amplified signals of interest and amplified unwanted signals, and a matching network that separates the amplified signals of interest from the amplified unwanted signals in conjunction with additional downstream filters. The preprocessing stage also includes a signal path that includes components for receiving and pre-processing the amplified signals of interest, and a shunt path that includes components for adjusting reflected energy sent back to the amplifier for limiting the output swing of the amplifier in a frequency band corresponding to the amplified unwanted signals.
摘要:
A power management system and method for a wireless communication device generates an average desired transmit power signal based on at least one of a received signal strength indicator signal and a power control instruction signal from a base station. A power supply level adjustment signal is generated based on the data parameters of an outgoing data stream and at least one environmental information signal. A combination of the power supply level adjustment signal and the average desired transmit power or a gain control signal and an altered version of the power supply level adjustment signal is used to generate a variable power supply signal that is provided to an output amplifier block for sufficiently generating outgoing wireless device radio signals while reducing power loss in the output amplifier block.