摘要:
A fused high density multi-layered integrated circuit module for integrating infrared detector arrays to signal conditioning circuits is disclosed. The module comprises a plurality of thin film substrate layers disposed in substantially overlapping registry to form a non-conductive supporting body, a plurality of the layers have electronic devices mounted thereon. A plurality of detector element connectors are formed along a first edge portion of the body. Conductive conduits are formed upon a plurality of the layers. The conductive conduits have first portions which interconnect the detector element connectors to the electronic devices disposed upon the layers of the body. The conductive conduits also have second portions formed upon the surface of said layers and extending to the second edge portion thereof for communicating signals between the electronic devices and external electronics. A glass binding material adhesively attaches adjacent substrate layers together. The glass binding material has a coefficient of expansion of the substrate layers such that thermal stress is reduced and the need for a buffer board is consequently eliminated.
摘要:
A temperature dependent focal plane array operates without a temperature stabilization cooler and/or heater over a wide range of ambient temperatures. Gain, offset and/or bias correction tables are provided in a flash memory in memory pages indexed by the measured temperature of the focal plane array. The memory stores a calibration database, which is accessed using a logic circuit which generates a memory page address from a digitized temperature measurement of the focal plane array. The calibration database is comprised of an array of bias, gain and offset values for each pixel in the focal plane array for each potential operating temperature over the entire range of potential operating temperatures. The bias, gain and offset data within the database are read out, converted to analog form, and used by analog circuits to correct the focal plane array response.
摘要:
An integrated circuit package that provides a reference plane relative to an image plane of an image sensor is described. The reference plane is aligned with respect to the image plane of the sensor such that the sensor can be mounted in an optical assembly quickly, easily, accurately, and inexpensively. The package can be thin, allowing for use of the package in retrofit applications such as using the packaged image sensor in a conventional 35 mm camera. The package includes a standoff frame for mounting a transparent window. The package includes reference members, such as rails, that define the reference plane. The package provides a desired tolerance between the reference plane and image plane of the sensor when the sensor is bonded into the package. The window can be flat or configured as a lens to focus the image on the image plane. The window can be configured such that its front (outer) face becomes the image plane of the packaged image sensor.
摘要:
A temperature dependent focal plane array operates without a temperature stabilization cooler and/or heater over a wide range of ambient temperatures. Gain, offset and/or bias correction tables are provided in a flash memory in memory pages indexed by the measured temperature of the focal plane array. The memory stores a calibration database, which is accessed using a logic circuit which generates a memory page address from a digitized temperature measurement of the focal plane array. The calibration database is comprised of an array of bias, gain and offset values for each pixel in the focal plane array for each potential operating temperature over the entire range of potential operating temperatures. The bias, gain and offset data within the database are read out, converted to analog form, and used by analog circuits to correct the focal plane array response.
摘要:
A fused high density multi-layered integrated circuit module for integrating infrared detector arrays to signal conditioning circuits is disclosed. The module comprises a plurality of thin film substrate layers disposed in substantially overlapping registry to form a non-conductive supporting body, a plurality of the layers have electronic devices mounted thereon. A plurality of detector element connectors are formed along a first edge portion of the body. Conductive conduits are formed upon a plurality of the layers. The conductive conduits have first portions which interconnect the detector element connectors to the electronic devices disposed upon the layers of the body. The conductive conduits also have second portions formed upon the surface of said layers and extending to the second edge portion thereof for communicating signals between the electronic devices and external electronics. A glass binding material adhesively attaches adjacent substrate layers together. The glass binding material has a coefficient of expansion approximately equal to the coefficient of expansion of the substrate layers such that thermal stress is reduced and the need for a buffer board is consequently eliminated.