Abstract:
A lithium rechargeable battery, which includes a separator having excellent mechanical strength such as elastic strength, swelling resistance, heat resistance, and peel strength. The lithium rechargeable battery includes a cathode, an anode, a separator for separating both electrodes from each other, and a non-aqueous electrolyte, wherein the separator includes a porous membrane formed of a ceramic material and a binder, and the binder has an elongation ratio of 200 to 300%.
Abstract:
A lithium ion secondary battery is provided. The lithium ion secondary battery generally comprises an electrode assembly, a container for accommodating the electrode assembly; and an electrolyte. The electrode assembly comprises two electrodes having opposite polarities and a separator. The separator comprises a porous membrane comprising clusters of ceramic particles. The porous membrane is formed by bonding the particle clusters with a binder. Each particle cluster is formed either by sintering or by dissolving and re-crystallizing all or a portion of the ceramic particles. The ceramic particles comprise a ceramic material having a band gap. Each particle cluster may have the shape of a grape bunch or a lamina, and may be formed by laminating scale or flake shaped ceramic particles.
Abstract:
A pouch type secondary battery having enhanced reliability by protecting the battery from external impacts is described. A reinforcement structure may be installed on a pouch casing and an electrode assembly housed in the pouch casing. Short-circuits inside the pouch casing may be minimized. The pouch type secondary battery has an electrode assembly with positive and negative electrode plates with a separator interposed therebetween, and positive and negative terminal portions extending from the positive and negative electrode plates. A first reinforcement member is closely adhered to one or more planes of the electrode assembly. A second reinforcement member may be adhered to the pouch casing and used with or without the first reinforcement member.
Abstract:
A lithium ion secondary battery and a jelly-roll type electrode assembly in a lithium ion secondary battery including a can and a cap assembly together with the electrode assembly. The electrode assembly is made up of two electrodes; a ceramic separator coating on at least one surface among the four surfaces of the two electrode plates and located between the two opposing electrodes; and porous polymer resin separation films placed between the electrode plates at certain locations where the plates are bent to relatively small radii of curvature and outward from an innermost portion of a core, and/or at terminal ends of the electrode plates, respectively.
Abstract:
A lithium secondary battery includes an electrode assembly having two electrodes and a separator interposed between the two electrodes, and a case for storing the electrode assembly, wherein the separator is formed by using a binder and a filler including a solid electrolyte having lithium ion conductivity. The lithium secondary battery has a separator and an electrolyte capable of increasing internal ion-conductivity. Also, a lithium secondary battery has a separator capable of safely preventing a short circuit between the electrodes in a possibly high temperature.
Abstract:
A lithium rechargeable battery, which includes a separator having excellent mechanical strength such as elastic strength, swelling resistance, heat resistance, and peel strength. The lithium rechargeable battery includes a cathode, an anode, a separator for separating both electrodes from each other, and a non-aqueous electrolyte, wherein the separator includes a porous membrane formed of a ceramic material and a binder, and the binder has an elongation ratio of 200 to 300%.
Abstract:
An electrode which has a Si-containing material layer and a porous film, and a lithium battery employing the same. In the electrode, the Si-containing material layer is applied on an electrode current collector and/or an electrode active material to protect the surface of the electrode current collector from oxidation. Also, the applied Si-containing material layer enhances the adhesion between the electrode current collector and the electrode active material to improve cycle life characteristics. Also, it increases the adhesion between the electrode active material and the porous film to reduce resistance, and to improve ohmic contacts and to lower the Shottkey barrier. In addition, the electrode includes the porous film functioning as a separator, and thus can provide a battery which is safe under conditions of overcharge and heat exposure without needing an additional separator.
Abstract:
A lithium ion secondary battery is provided. The lithium ion secondary battery generally comprises an electrode assembly, a container for accommodating the electrode assembly; and an electrolyte. The electrode assembly comprises two electrodes having opposite polarities and a separator. The separator comprises a porous membrane comprising clusters of ceramic particles. The porous membrane is formed by bonding the particle clusters with a binder. Each particle cluster is formed either by sintering or by dissolving and re-crystallizing all or a portion of the ceramic particles. The ceramic particles comprise a ceramic material having a band gap. Each particle cluster may have the shape of a grape bunch or a lamina, and may be formed by laminating scale or flake shaped ceramic particles.
Abstract:
Disclosed is an electrolyte for a rechargeable lithium battery including an additive for overcharge inhibition comprising a compound represented by formula 1; a lithium salt; and a non-aqueous organic solvent: where R1, R2 and R3 are the same or independently selected from H, CH3, C2H5, CH═CH2, CH═CHCH3, or a functional group with N, P, or S.
Abstract:
A pouch type secondary battery having enhanced reliability by protecting the battery from external impacts is described. A reinforcement structure may be installed on a pouch casing and an electrode assembly housed in the pouch casing. Short-circuits inside the pouch casing may be minimized. The pouch type secondary battery has an electrode assembly with positive and negative electrode plates with a separator interposed therebetween, and positive and negative terminal portions extending from the positive and negative electrode plates. A first reinforcement member is closely adhered to one or more planes of the electrode assembly. A second reinforcement member may be adhered to the pouch casing and used with or without the first reinforcement member.