Abstract:
An apparatus and method of planning a traveling path of a mobile robot, the apparatus and method including a pattern extracting unit, a pattern direction extracting unit, and a path generating unit. The pattern extracting unit may extract at least one pattern from an image of a ceiling captured in a ceiling direction. The pattern direction extracting unit may extract a pattern direction of the image in the form of a line from the at least one extracted pattern. The path generating unit may generate a traveling path of the mobile robot based on the extracted pattern direction.
Abstract:
Disclosed are a map building apparatus and method using a distance measurement. According to an aspect, by creating a first map and a second map respectively using the characteristics of different characteristic areas based on a distance-voltage characteristics of a distance measurement sensor, and combining the first map with the second map, a grid map is created. Accordingly, since a map regarding a peripheral environment is created using plural areas of the distance-voltage characteristics, a more accurate map may be created.
Abstract:
A method and apparatus for estimating the pose of a mobile robot using a particle filter is provided. The apparatus includes an odometer which detects a variation in the pose of a mobile robot, a feature-processing module which extracts at least one feature from an upward image captured by the mobile robot, and a particle filter module which determines current poses and weights of a plurality of particles by applying the mobile robot pose variation detected by the odometer and the feature extracted by the feature-processing module to previous poses and weights of the particles.
Abstract:
An apparatus, method, and medium for sensing a slip in a mobile robot is provided. The apparatus for sensing a slip in a mobile robot includes a driving motor control unit to control a driving motor that rotates a plurality of driving wheels of the mobile robot, a first rotation sensor to sense a first rotation angle of the mobile robot by using the difference between traveling distances of the plurality of driving wheels, a second rotation sensor to sense a second rotation angle of the mobile robot by sensing a rotation of the mobile robot, and a slip-sensing unit to sense the slip of the mobile robot by comparing the first rotation angle with the second rotation angle. The driving motor control unit controls the driving motor to travel straight in a specified pattern.
Abstract:
Provided are an apparatus and method of measuring a distance using structured light. The apparatus includes a binarization unit binarizing an image, an image identification unit identifying an image having connected pixels in the binarized image, a length ratio calculation unit obtaining the length ratio of the major axis of the image having the connected pixels to a minor axis perpendicular to the major axis, a pixel mean calculation unit obtaining the mean of pixel values of the image having the connected pixels, and an image extraction unit extracting an image formed by the light irradiated from the light source, from the images having connected pixels using the length ratio and the mean of the pixel values.
Abstract:
An apparatus and method generating a grid map are provided. The grid map generating apparatus generates a grid map while turning 360 degrees at a dynamically adjustable rotational velocity. The dynamically adjustable rotational velocity allows grid points to have equal intervals on the grid map. The grid map generating apparatus generates a grid map while making a complete turn, and generates a grid map corresponding to a non-linear section while making another turn.
Abstract:
A technique of detecting a slip of a robot using a particle filter and feature information of a ceiling image is disclosed. A first position of the robot is computed using a plurality of particles, a second position of the robot is computed using the feature information of the ceiling image, and whether a slip has occurred is determined based on a distance between the first position and the second position.
Abstract:
A system building a map while an image sensor is moving, the system including the image sensor configured to capture images while the image sensor moves relative to one or more different locations, a sub-map building unit configured to recognize a relative location for at least the image sensor of the system using the captured images, build up a sub-map, and if a condition for stopping a building of the sub-map is met, store the sub-map which has been so far built up, an operation determining unit configured to determine whether the condition for stopping building the sub-map, an image group storing unit configured to store an image group including images that are newly captured from the image sensor after the storing of the sub-map when the condition for the stopping of the building of the sub-map is satisfied, and an overall map building unit configured to build an overall map based on the built sub-map and the stored image group when a current relative location for at least the image sensor of the system is determined to be same as a previous relative location for at least the image sensor of the system.
Abstract:
Localization and map building apparatus and method applicable to a mobile robot are provided. In an exemplary embodiment, a map building apparatus extracts a pattern of landmarks of the same kind and adjusts a landmark map using the extracted pattern when generating the landmark map for localization. Accordingly, since the landmark map is adjusted based on the pattern extracted on the basis of location information of each landmark, accuracy of localization and map building of the mobile robot can be improved.
Abstract:
Provided is an apparatus for recognizing the position of a mobile robot. The apparatus includes an image capturing unit which is loaded into a mobile robot and captures an image; an illuminance determining unit which determines illuminance at a position where an image is to be captured; a light-emitting unit which emits light toward the position; a light-emitting control unit which controls the light-emitting unit according to the determined illuminance; a driving control unit which controls the speed of the mobile robot according to the determined illuminance; and a position recognizing unit which recognizes the position of the mobile robot by comparing a pre-stored image to the captured image.