摘要:
Roughly described, high-stress volumetric regions of an integrated circuit structure are predicted by first scanning one or more layout layers to identify planar regions of high 2-dimensional stress, and then performing the much more expensive 3-dimensional stress analysis only on volumetric regions corresponding to those planar regions that were found to have high 2-dimensional stress. A windowing method can be used for the 2-dimensional scan, optionally with an overlap region extending slightly into adjacent windows. Very narrow features arising at the edges of an analysis window can be relocated to the edge of the analysis window in order to avoid numerical artifacts.
摘要:
Roughly described, the invention involves ways to characterize, take account of, or take advantage of stresses introduced by TSV's near transistors. The physical relationship between the TSV and nearby transistors can be taken into account when characterizing a circuit. A layout derived without knowledge of the physical relationships between TSV and nearby transistors, can be modified to do so. A macrocell can include both a TSV and nearby transistors, and a simulation model for the macrocell which takes into account physical relationships between the transistors and the TSV. A macrocell can include both a TSV and nearby transistors, one of the transistors being rotated relative to others. An IC can also include a transistor in such proximity to a TSV as to change the carrier mobility in the channel by more than the limit previously thought to define an exclusion zone.
摘要:
Roughly described, the invention involves ways to characterize, take account of, or take advantage of stresses introduced by TSV's near transistors. The physical relationship between the TSV and nearby transistors can be taken into account when characterizing a circuit. A layout derived without knowledge of the physical relationships between TSV and nearby transistors, can be modified to do so. A macrocell can include both a TSV and nearby transistors, and a simulation model for the macrocell which takes into account physical relationships between the transistors and the TSV. A macrocell can include both a TSV and nearby transistors, one of the transistors being rotated relative to others. An IC can also include a transistor in such proximity to a TSV as to change the carrier mobility in the channel by more than the limit previously thought to define an exclusion zone.
摘要:
A method, a computer medium storing computer instructions performing a method, and a computer with processor and memory perform stress modeling as follows. The stress model transforms a representation of a material conversion of a first material in the integrated circuit to a second material in the integrated circuit. Prior to the material conversion the first material occupies a first space having a first boundary. After the material conversion the first material and the second material together occupy a second space having a second boundary. The first space and the second space are different. The stress model performed by the computer system transforms the representation of the material conversion of the first material to the second material into: i) the first material occupying the first space having the first boundary, and ii) a strain displacement condition of the first material. The strain displacement condition is determined by a spatial change from the first boundary to the second boundary.
摘要:
A method, a computer medium storing computer instructions performing a method, and a computer with processor and memory perform stress modeling as follows. The stress model transforms a representation of a material conversion of a first material in the integrated circuit to a second material in the integrated circuit. Prior to the material conversion the first material occupies a first space having a first boundary. After the material conversion the first material and the second material together occupy a second space having a second boundary. The first space and the second space are different. The stress model performed by the computer system transforms the representation of the material conversion of the first material to the second material into: i) the first material occupying the first space having the first boundary, and ii) a strain displacement condition of the first material. The strain displacement condition is determined by a spatial change from the first boundary to the second boundary.
摘要:
Roughly described, the invention involves ways to characterize, take account of, or take advantage of stresses introduced by TSV's near transistors. The physical relationship between the TSV and nearby transistors can be taken into account when characterizing a circuit. A layout derived without knowledge of the physical relationships between TSV and nearby transistors, can be modified to do so. A macrocell can include both a TSV and nearby transistors, and a simulation model for the macrocell which takes into account physical relationships between the transistors and the TSV. A macrocell can include both a TSV and nearby transistors, one of the transistors being rotated relative to others. An IC can also include a transistor in such proximity to a TSV as to change the carrier mobility in the channel by more than the limit previously thought to define an exclusion zone.
摘要:
Roughly described, the invention involves ways to characterize, take account of, or take advantage of stresses introduced by TSV's near transistors. The physical relationship between the TSV and nearby transistors can be taken into account when characterizing a circuit. A layout derived without knowledge of the physical relationships between TSV and nearby transistors, can be modified to do so. A macrocell can include both a TSV and nearby transistors, and a simulation model for the macrocell which takes into account physical relationships between the transistors and the TSV. A macrocell can include both a TSV and nearby transistors, one of the transistors being rotated relative to others. An IC can also include a transistor in such proximity to a TSV as to change the carrier mobility in the channel by more than the limit previously thought to define an exclusion zone.
摘要:
Roughly described, high-stress volumetric regions of an integrated circuit structure are predicted by first scanning one or more layout layers to identify planar regions of high 2-dimensional stress, and then performing the much more expensive 3-dimensional stress analysis only on volumetric regions corresponding to those planar regions that were found to have high 2-dimensional stress. A windowing method can be used for the 2-dimensional scan, optionally with an overlap region extending slightly into adjacent windows. Very narrow features arising at the edges of an analysis window can be relocated to the edge of the analysis window in order to avoid numerical artifacts.