Abstract:
An integrated conductor/suspension structure for supporting and electrically connecting a write/read head in a hard disk drive and methods of making the conductor/suspension structure are provided. The integrated conductor/suspension structure may allow for an increased characteristic-impedance range, greater interference shielding and a reduction of signal loss that is contributed by a lossy conductive substrate. The suspension structure includes apertures formed therein that result in a reduction in the lossy material and its effect on the electrical signals. In addition, the conductor/suspension structure of the present invention provides shielding to reduce the interference from external electric fields.
Abstract:
An integrated conductor/suspension structure for supporting and electrically connecting a write/read head in a hard disk drive and methods of making the conductor/suspension structure are provided. The integrated conductor/suspension structure may allow for an increased characteristic-impedance range, greater interference shielding and a reduction of signal loss that is contributed by a lossy conductive substrate. The suspension structure includes apertures formed therein that result in a reduction in the lossy material and its effect on the electrical signals. In addition, the conductor/suspension structure of the present invention provides shielding to reduce the interference from external electric fields.
Abstract:
An apparatus and method for reducing solder pad size in an electrical lead suspension (ELS) to decrease signal path capacitive discontinuities. The method provides a base-metal layer for the ELS. A dielectric layer above the base-metal layer is also provided. A signal conductive layer is provided above dielectric layer. The signal conductive layer carries at least one solder pad portion, wherein both a size of the solder pad portion and an amount of solder applied to the solder pad portion are reduced such that the solder pad to a ground, and solder on the solder pad to adjacent solder on adjacent pads, capacitance are reduced providing low signal reflection losses and a decrease in cross-talk.
Abstract:
An apparatus and method for reducing solder pad size in an electrical lead suspension (ELS) to decrease signal path capacitive discontinuities. The method provides a base-metal layer for the ELS. A dielectric layer above the base-metal layer is also provided. A signal conductive layer is provided above dielectric layer. The signal conductive layer carries at least one solder pad portion, wherein both a size of the solder pad portion and an amount of solder applied to the solder pad portion are reduced such that the solder pad to a ground, and solder on the solder pad to adjacent solder on adjacent pads, capacitance are reduced providing low signal reflection losses and a decrease in cross-talk.
Abstract:
An apparatus and method for forming an opening in a base-metal layer of an electrical lead suspension (ELS) to increase the impedance. The method provides a base-metal layer having at least one opening. A dielectric layer above the base-metal layer is also provided, the dielectric layer covering a portion of the base-metal layer and at least one of the openings in the base-metal layer. A signal conductive layer is provided above dielectric layer. The signal conductive layer carries at least one solder pad portion, wherein the solder pad portion is aligned above the portion of the dielectric layer covering at least one of the openings in the base-metal layer. By aligning the at least one solder pad portion over the opening of the base-metal layer the solder pad to base-metal layer the impedance between the at least one solder pad portion and the base-metal layer is increased.
Abstract:
A perpendicular magnetic recording system has a write head having a main helical coil (the write coil) and main pole (the write pole) that directs write flux in a direction perpendicular to the recording layer in the magnetic recording medium, and an auxiliary coil and auxiliary pole that injects magnetic flux into the write pole at an angle to the primary or perpendicular axis of the write pole. The auxiliary coil is preferably a helical coil wrapped around the auxiliary pole. The additional flux from the auxiliary pole, which is injected non-parallel to the primary magnetization of the write pole, exerts a relatively large torque on the magnetization of the write pole, thereby facilitating magnetization reversal of the write pole. Electrical circuitry is connected to the main coil and the auxiliary coil to generate the auxiliary flux simultaneous with the switching of the magnetization of the write pole.
Abstract:
A perpendicular magnetic recording system has a write head having a main helical coil (the write coil) and main pole (the write pole) that directs write flux in a direction perpendicular to the recording layer in the magnetic recording medium, and an auxiliary coil and auxiliary pole that injects magnetic flux into the write pole at an angle to the primary or perpendicular axis of the write pole. The auxiliary coil is preferably a helical coil wrapped around the auxiliary pole. The additional flux from the auxiliary pole, which is injected non-parallel to the primary magnetization of the write pole, exerts a relatively large torque on the magnetization of the write pole, thereby facilitating magnetization reversal of the write pole. Electrical circuitry is connected to the main coil and the auxiliary coil to generate the auxiliary flux simultaneous with the switching of the magnetization of the write pole.
Abstract:
A perpendicular magnetic recording system has a write head with a main perpendicular write pole connected to a yoke with first and second electrical coils. The first coil is wrapped around the yoke on one side of the main pole, and the second coil is wrapped around the yoke on the other side of the main pole. The first end of each coil is connected to a respective terminal. The second ends of the two coils are connected together and connected to a common terminal. A lead-time circuit is connected between the common terminal and the first end of one of the coils. Immediately after the direction of write current is switched by the write driver, the lead-time circuit causes the current in one of the coils to lead the current in the other coil. The current displacement between the two coils creates a precession of the magnetic flux reversal, thereby reducing the switching time of the write head.
Abstract:
A method and apparatus is provided for extending a read bandwidth and increasing a high-frequency signal-to-noise ratio (SNR) of a front-end of a read path of a hard disk drive (HDD) by introducing a high impedance section at the front-end of the read path. The high impedance section may mitigate capacitive effects found at the front-end of the read path, thereby improving signal transfer by extending the read bandwidth.
Abstract:
An apparatus and method for forming an opening in a base-metal layer of an electrical lead suspension (ELS) to increase the impedance. The method provides a base-metal layer having at least one opening. A dielectric layer above the base-metal layer is also provided, the dielectric layer covering a portion of the base-metal layer and at least one of the openings in the base-metal layer. A signal conductive layer is provided above dielectric layer. The signal conductive layer carries at least one solder pad portion, wherein the solder pad portion is aligned above the portion of the dielectric layer covering at least one of the openings in the base-metal layer. By aligning the at least one solder pad portion over the opening of the base-metal layer the solder pad to base-metal layer the impedance between the at least one solder pad portion and the base-metal layer is increased.