Abstract:
A method of preparing carbon nanotube/polymer composite having electromagnetic interference (EMI) shielding effectiveness is disclosed, which includes: dispersing multi-walled carbon nanotubes (MWCNT) in an organic solvent such as N,N-Dimethylacetamide (DMAc); dissolving monomers such as methyl methacrylate (MMA) and an initiator such as 2,2-azobisisobutyronitrile (AIBN) in the MWCNT dispersion; and polymerizing the monomers in the resulting mixture at an elevated temperature such as 120° C. to form a MWCNT/PMMA composite. The composite is coated onto a PET film, and the coated PET film alone or a stack of multiple coated PET films can be applied as an EMI shielding material.
Abstract:
The present invention primarily relates to a method for initiating and controlling a lighting equipment by detecting and determining through an algorithm whether a flicker of light may occur during the period of initiating or dimming the lighting equipment. The method further calculates to obtain a current compensation ratio that the current level need be elevated to prevent the occurrence of flicker and performs a real-time compensation for the electrical current, when necessary. The method according to the invention will initiate the lighting equipment at an electrical current level used during a previous stable operation of the lighting equipment, so as to further prevent the occurrence of flicker of light during the initiation of the lighting equipment and achieve the energy saving purpose.
Abstract:
An LED driving circuit to provide DC power to an LED to generate light includes a voltage-lowering regulation circuit, a rectification circuit and a filter and current-limiting circuit. The voltage-lowering regulation circuit aims to regulate impedance and provide a back electromotive force with polarity opposite to input voltage so that input power passed through the voltage-lowering regulation circuit is offset by the back electromotive force to a lower voltage. Then the input power passes through the rectification circuit to become DC power. The filter and current-limiting circuit receives the DC power and has at least one filter element to absorb or release the voltage to perform filtering and at least one current-limiting resistor to limit DC value. Therefore, the DC power has a steady voltage and current to energize the LED for lighting.
Abstract:
The present invention provides a polymerizable composition, which comprises: (a) at least one monomer of formula (I): (b) a photo-initiator, wherein X1, X2, Y1, Y2, Y3, Y4, a, and b are as defined in the specification and the amount of the monomer of formula (I) is at least 1 wt %, based on the total weight of the polymerizable composition. The present invention also provides an optical film comprising a coating layer formed from the above polymerizable composition. The optical film can be used in backlight modules of displays as a brightness enhancement film.
Abstract:
A method of preparing carbon nanotube/polymer composite having electromagnetic interference (EMI) shielding effectiveness is disclosed, which includes: dispersing multi-walled carbon nanotubes (MWCNT) in an organic solvent such as N,N-Dimethylacetamide (DMAc); dissolving monomers such as methyl methacrylate (MMA) and an initiator such as 2,2-azobisisobutyronitrile (AIBN) in the MWCNT dispersion; and polymerizing the monomers in the resulting mixture at an elevated temperature such as 120° C. to form a MWCNT/PMMA composite. The composite is coated onto a PET film, and the coated PET film alone or a stack of multiple coated PET films can be applied as an EMI shielding material.
Abstract:
A brightness enhancement film is provided, which comprises a substrate with a light diffusion layer having a convex-concave structure on one side of the substrate. The brightness enhancement film of the present invention can be used in liquid crystal displays (LCDs) as a light diffusion brightness enhancement film.
Abstract:
A safety control circuit for a direct current electromotive nail driver comprises: a direct current power source for supplying power to the circuit; a control and protecting unit having a security switch, a trigger switch and a stop switch; and a motor for driving an object. When the security switch is turned on and then the trigger switch is pressed, the control and protecting unit will receive a signal from the trigger switch so as to conduct the motor and thus the motor operates to drive an object. When the motor operates through a predetermined time period, the stop switch will actuate a protection function of the control and protecting unit so that the motor cannot operate until the security switch is actuated again.