Abstract:
A segmental flow-control method for a flow-control filter string in an oil-gas well and an oil-gas well structure are disclosed. The oil-gas well includes a well wall(1), a casing(2) located in the well wall(1), a cement sheath(3) provided between the casing(2) and the well wall(1), channeling path(5) existing outside the casing(2), and a plurality of perforated tunnels (6) passing through the casing(2), the cement sheath(3) and/or the channeling path(5) and into a formation from the inside of the casing to the formation. The segmental flow-control method for the flow-control filter string(7) includes the following steps: running the flow-control filter string(7) into the casing, wherein the flow-control filter string(7) is provided with a flow-control filter (8), and an annular space is at least partially formed between the flow-control filter string(7) and the casing(2); injecting a particle-carrying liquid carrying anti-channeling flow pack-off particles into the annular space through a particle-carrying liquid injecting passage, thus the particle-carrying liquid carries the anti-channeling flow pack-off particles into the annular space, and enters the channeling path(5) through the perforated tunnels(6); and sealing the particle-carrying liquid injecting passage or closing a communicating part between the particle-carrying liquid injecting passage and the annular space.
Abstract:
FIG. 1 is a front perspective view of a folding chair showing my new design; FIG. 2 is a rear perspective view thereof; FIG. 3 is a front view thereof; FIG. 4 is a back view thereof; FIG. 5 is a right side view thereof; FIG. 6 is a left side view thereof; FIG. 7 is a top view thereof; FIG. 8 is a bottom view thereof; and, FIG. 9 is a front perspective view thereof in an alternate position of use. The stippling is shown to indicate a contrast in materials.
Abstract:
A segmental flow-control method for a flow-control filter string in an oil-gas well and an oil-gas well structure are disclosed. The oil-gas well includes a well wall(1), a casing(2) located in the well wall(1), a cement sheath(3) provided between the casing(2) and the well wall(1), channeling path(5) existing outside the casing(2), and a plurality of perforated tunnels (6) passing through the casing(2), the cement sheath(3) and/or the channeling path(5) and into a formation from the inside of the casing to the formation. The segmental flow-control method for the flow-control filter string(7) includes the following steps: running the flow-control filter string(7) into the casing, wherein the flow-control filter string(7) is provided with a flow-control filter (8), and an annular space is at least partially formed between the flow-control filter string(7) and the casing(2); injecting a particle-carrying liquid carrying anti-channeling flow pack-off particles into the annular space through a particle-carrying liquid injecting passage, thus the particle-carrying liquid carries the anti-channeling flow pack-off particles into the annular space, and enters the channeling path(5) through the perforated tunnels(6); and sealing the particle-carrying liquid injecting passage or closing a communicating part between the particle-carrying liquid injecting passage and the annular space.
Abstract:
The present invention relates to hepatitis A vaccine, especially to a lyophilized attenuated hepatitis A vaccine which can be stored at ambient temperature for extended periods of time, and to a method for producing the same. The present invention further relates to a stabilizer for lyophilized live vaccine and its use in improving thermostability of lyophilized live vaccine during lyophilization processing and storage period after lyophilization.
Abstract:
A method and a system for segmental flow control in an oil-gas well are disclosed. The oil-gas well includes a first annular space (111) and a second annular space (103). The first annular space (111) is formed with the space between the borehole wall (101) of the oil-gas well and a perforated tube (102) which is in the oil-gas well and extends along an axial direction of the oil-gas well; The second annular space (103) which is formed with the space between the perforated tube (102) and a flow-control filter string (105) which is in the perforated tube (102) and extends along the axial direction of the oil-gas well. The method includes filling anti-channeling isolating particles (109) in the first annular space (111) and the second annular space (103) to enable fluid to flow in the first annular space (111) and the second annular space (103) filled with the anti-channeling isolating particles (109) in the manner of seepage.
Abstract:
A method and a system for segmental flow control in an oil-gas well are disclosed. The oil-gas well includes a first annular space (111) and a second annular space (103). The first annular space (111) is formed with the space between the borehole wall (101) of the oil-gas well and a perforated tube (102) which is in the oil-gas well and extends along an axial direction of the oil-gas well; The second annular space(103) which is formed with the space between the perforated tube(102) and a flow-control filter string (105) which is in the perforated tube(102) and extends along the axial direction of the oil-gas well. The method includes filling anti-channeling isolating particles (109) in the first annular space (111) and the second annular space (103) to enable fluid to flow in the first annular space (111) and the second annular space (103) filled with the anti-channeling isolating particles (109) in the manner of seepage.
Abstract:
A method and a system for segmental flow control in an oil-gas well are disclosed. The oil-gas well includes a first annular space (111) and a second annular space (103). The first annular space (111) is formed with the space between the borehole wall (101) of the oil-gas well and a perforated tube (102) which is in the oil-gas well and extends along an axial direction of the oil-gas well; The second annular space (103) which is formed with the space between the perforated tube (102) and a flow-control filter string (105) which is in the perforated tube (102) and extends along the axial direction of the oil-gas well. The method includes filling anti-channeling isolating particles (109) in the first annular space (111) and the second annular space (103) to enable fluid to flow in the first annular space (111) and the second annular space (103) filled with the anti-channeling isolating particles (109) in the manner of seepage.