Abstract:
A cooking apparatus includes a case in which a cooking chamber for cooking food is provided, a heating source provided in the case, a fan configured to circulate air in the cooking chamber; and a plasma discharger provided in the case and configured to generate plasma in order to remove residue from a surface of the case.
Abstract:
A bulb in an electrodeless lamp system comprises a bulb unit having an envelope space in which luminous material excited by an electric field to form plasma and generate light is filled and two or more conductors installed in the envelope space so that ends of the conductors face each other.
Abstract:
A resonator for an electrodeless lighting system may include an inner space configured to receive an electrodeless bulb that emits light by plasmarizing a light emitting material filled inside of the electrodeless bulb. Additionally, the resonator may have light transmission holes configured to shield microwaves, generated by a microwave generator and applied to the inner space, from being discharged to an exterior of the resonator. Thus, the resonator may be configured to transmit light emitted from the electrodeless bulb. Further, the resonator may be provided with a low aperture ratio portion that has a low aperture ratio extending from a predetermined region in a circumferential direction of the resonator, and a high aperture ratio portion that has a higher aperture ratio than the low aperture ratio portion. In this regard, the high aperture ratio portion may be formed in the remainder of the circumferential direction of the resonator.
Abstract:
In an electrodeless lamp system, an electrodeless lamp system in accordance with the present invention includes an electromagnetic wave generating unit for generating electromagnetic wave; a resonance unit connected to the electromagnetic wave generating unit for resonating the electromagnetic wave generated in the electromagnetic wave generating unit in a certain frequency; and a luminous unit connected to the resonance unit in order to generate light by forming plasma by an electric filed formed in the resonance unit; wherein the resonance unit includes a first resonance unit connected to the electromagnetic wave generating unit and a second resonance unit vertically connected to the first resonance unit, connected to the luminous unit and forming a resonance space for resonating in a certain frequency with the first resonance unit.
Abstract:
Disclosed is an electrodeless lighting system capable of being used as an optical source of an electronic device by being minimized and capable of obtaining an optimum impedance matching and controlling a resonance frequency. The electrodeless lighting system comprises: a magnetron for generating microwave and having an antenna through which the microwave is outputted; a resonator having a resonance space where the microwave is resonated and having an inner diameter partially different along a path that the microwave passes; a bulb installed inside the resonator and having a light emitting material therein for emitting light by the microwave energy; and a microwave feeder of which one side is connected to the antenna and another side thereof is connected to the bulb, for guiding microwave to the bulb, in which a ratio of an outer diameter of the microwave feeder and a ratio of an inner diameter of the resonator corresponding to the outer diameter of the microwave feeder are varied along a progressive direction of the microwave.
Abstract:
Disclosed is an electrodeless lamp system, including a microwave generator generating microwaves, a microwave resonator including a cavity coupled with the microwave generator and an LC resonance circuit constituted with an inductor and a capacitor so as to make the microwaves trapped inside the cavity to resonate with the LC resonance circuit, and a light-emitting unit coupled with the cavity to form plasma by the resonating microwaves so as to emit light.
Abstract:
An electrodeless lamp is disclosed. The electrodeless lamp according to the present invention is characterized in that SnI2 is used as a major component filled into a bulb as a filler, and the filler is excited by applying a microwave or high frequency to the bulb for thereby generating a visual ray for thereby obtaining a certain color temperature proper as a light source and implementing a faster light emission start-up at a lower cost without an additive.
Abstract:
The present invention relates to a light guide capable of transferring light from an illuminating apparatus to a certain distant destination. The light guide includes a light source, and a hollow guide unit extended from the light source and having a transparent lateral surface. The present invention provides a pipe shaped light guide having a cross section of an epicycloidal curve for enhancing power and a light emitting characteristic. In the present invention, light is transmitted using a light transmitting material or a prism at a portion of a cross section of the epicycloidal curve, and a reflection plate formed of a high reflection ratio is installed at the remaining portions of the cross section of the same. In addition, an expensive lens or prism is not used in the present invention thereby decreasing fabrication cost. It is possible to provide a high efficiency light guide. In particular, it is possible to improve illumination and energy efficiency characteristics by changing the type of the epicycloid or changing an optical parameter of a material which forms the wall surface of the light guide.
Abstract:
Provided is an oven including a cavity, a curtain, and a fixing portion. The cavity receives and heats a food. The curtain shields at least one sidewall of the cavity. The fixing portion fixes the curtain to the cavity. Thus, the oven is used under clean conditions, and the cooked conditions of the food are more sanitary and clean.
Abstract:
An enamel coating including a phosphate-based ingredient is provided on an inner surface of a cooking chamber and the inner surface of the cooking chamber is cleaned using high-temperature cleaning water. Therefore, the cleaning of the cooking chamber can be performed more efficiently.