摘要:
A technique for quantitatively expressing a manufacturing difficulty level of a photomask and for efficiently manufacturing the photomask is provided. A mask manufacturing difficulty level different for each mask layout, product, and mask layer is relatively recognized with a mask manufacturing load index calculated by a mask manufacturing load prediction system, and when layout correction is possible, the final layout is corrected to a layout with a low difficulty level, and a mask ordering party provides a mask manufacturer with information regarding the mask manufacturing difficulty level in an early stage. The mask manufacturing load index is expressed with a defect guarantee load index and a lithography load index.
摘要:
A shading area having a transmissivity in the range of 0 to 2% is formed at the center of a clear defect in a wiring pattern of a half tone mask. Semitransparent areas having a transmissivity in the range of 10 to 25% are formed, adjacently to shading area, in areas extending from the inside of the edge of an imaginary pattern having no defect to the outside of the edge. In this way, in the correction of the defect in the half tone mask, the working accuracy tolerable margin of the correction portion of the defect can be made large.
摘要:
A method of determining defects in photomasks according to the present invention is designed to increase the yield of the manufacture of photomasks and to decrease the cost of inspecting the photomasks. In the method, circuit data 1 representing a circuit to be formed on a semiconductor substrate by photolithography is prepared, and layout data 2 is prepared from the circuit data 1. The layout data is converted to compensated layout data by performing RET. Further, mask-manufacturing data is developed from the compensated layout data. To form patterns on a semiconductor substrate by photolithography, attribute information is imparted to the mask-manufacturing data. The attribute information represents whether the patterns are adaptive to electrically active regions or electrically non-active region. In the mask-inspecting process 6, a criterion for determining whether the patterns formed on the photomasks have defects is changed in accordance with the attribute information.
摘要:
A shading area having a transmissivity in the range of 0 to 2% is formed at the center of a clear defect in a wiring pattern of a halt half tone mask. Semitransparent areas having a transmissivity in the range of 10 to 25% are formed, adjacently to shading area, in areas extending from the inside of the edge of an imaginary pattern having no defect to the outside of the edge. In this way, in the correction of the defect in the half tone mask, the working accuracy tolerable margin of the correction portion of the defect can be made large.
摘要:
Organic matter and metal impurities present on the surface of a photomask are removed. Foreign matter still adhering to the surface of the photomask is removed with H2 gas dissolved water. The photomask is dried. Thus provided is a method of washing a photomask in a manner which permits attaining an effect of removing foreign matter equivalent or superior to that of a conventional method with a small amount of chemical solution and reducing the amounts of chemicals and high purity water.
摘要:
A shading area having a transmissivity in the range of 0 to 2% is formed at the center of a clear defect in a wiring pattern of a half tone mask. Semitransparent areas having a transmissivity in the range of 10 to 25% are formed, adjacently to shading area, in areas extending from the inside of the edge of an imaginary pattern having no defect to the outside of the edge. In this way, in the correction of the defect in the half tone mask, the working accuracy tolerable margin of the correction portion of the defect can be made large.
摘要:
A shading area having a transmissivity in the range of 0 to 2% is formed at the center of a clear defect in a wiring pattern of a half tone mask. Semitransparent areas having a transmissivity in the range of 10 to 25% are formed, adjacently to shading area, in areas extending from the inside of the edge of an imaginary pattern having no defect to the outside of the edge. In this way, in the correction of the defect in the half tone mask, the working accuracy tolerable margin of the correction portion of the defect can be made large.
摘要:
A method of determining defects in photomasks according to the present invention is designed to increase the yield of the manufacture of photomasks and to decrease the cost of inspecting the photomasks. In the method, circuit data 1 representing a circuit to be formed on a semiconductor substrate by photolithography is prepared, and layout data 2 is prepared from the circuit data 1. The layout data is converted to compensated layout data by performing RET. Further, mask-manufacturing data is developed from the compensated layout data. To form patterns on a semiconductor substrate by photolithography, attribute information is imparted to the mask-manufacturing data. The attribute information represents whether the patterns are adaptive to electrically active regions or electrically non-active region. In the mask-inspecting process 6, a criterion for determining whether the patterns formed on the photomasks have defects is changed in accordance with the attribute information.
摘要:
A shading area having a transmissivity in the range of 0 to 2% is formed at the center of a clear defect in a wiring pattern of a half tone mask. Semitransparent areas having a transmissivity in the range of 10 to 25% are formed, adjacently to shading area, in areas extending from the inside of the edge of an imaginary pattern having no defect to the outside of the edge. In this way, in the correction of the defect in the half tone mask, the working accuracy tolerable margin of the correction portion of the defect can be made large.
摘要:
The coordinate value of the deficient area detected by a wafer inspecting apparatus and the wafer inspecting data are transmitted to a coordinate transforming computer by use of an inspection-data managing computer. The coordinate value detected by the wafer inspection based on the wafer inspecting data and the photomask inspecting data is transformed into the coordinate value on the photomask, to thereby analyze the deficient area of the photomask.