Abstract:
A light fluctuation measuring apparatus, comprising a parameter setting unit 2 which sets parameters of a microscopic image obtaining unit and/or parameters of a light emission measuring unit used for observing light emission in a desired area of a sample in time series, a parameter storage 4 which stores parameters, a mode selector 3 which selects one of a microscopic image obtaining mode for obtaining a microscopic image by a microscopic image obtaining unit, and a light emission measuring mode for observing light emission in a desired area by a light emission measuring unit, and a control unit 1 which reads parameters stored in the storage 4 based on a selected mode, inputs the parameter to a microscopic image obtaining unit or a light emission measuring unit, and controls these units.
Abstract:
A light fluctuation measuring apparatus, comprising a parameter setting unit 2 which sets parameters of a microscopic image obtaining unit and/or parameters of a light emission measuring unit used for observing light emission in a desired area of a sample in time series, a parameter storage 4 which stores parameters, a mode selector 3 which selects one of a microscopic image obtaining mode for obtaining a microscopic image by a microscopic image obtaining unit, and a light emission measuring mode for observing light emission in a desired area by a light emission measuring unit, and a control unit 1 which reads parameters stored in the storage 4 based on a selected mode, inputs the parameter to a microscopic image obtaining unit or a light emission measuring unit, and controls these units.
Abstract:
An electric discharge machining apparatus includes a first movable body (40, 42, 50) movable along the Z axis, a ball screw (34), a motor (30) for causing rotation of the ball screw, a nut (35), attached to the first movable body, threadingly engaging the ball screw, a second movable body (10, 13) movable along the Z axis relative to the first movable body, capable of having the tool electrode attached thereto, and a linear motor (71, 72, 73) for moving the second movable body, for machining a workpiece by moving a tool electrode along a Z axis towards the workpiece while causing an electric discharge between the workpiece and the tool electrode. The linear motor includes a stator (73) attached to the first movable body, and a mover (71, 72) attached to the second movable body. The first and second movable bodies include respective electrode attachment units (50, 13).
Abstract:
A surgical assistance system for operating on biological tissue using a surgical tool attached to an arm of an automatically-controlled surgical instrument so that an optimal feed rate of the tool is calculated and outputted to the surgical instrument, the system including: a device for storing and voxelizing medical image data obtained from a biological tissue subject to surgery; a device for setting an operative location based on the shape of the biological tissue; a device for calculating a tool path along which the tool travels to perform surgery at an operative location; a device for determining the region of interference between the tool and the voxels; a device for determining the hardness of the biological tissue in the interference region; a device for calculating an optimal tool feed rate corresponding to the hardness; and a device for outputting the feed rate obtained by the calculations to the surgical instrument.
Abstract:
In a method of and apparatus for controlling an atmosphere in a heat treatment furnace according to the present invention, a carburizing is carried out while supplying a hydrocarbon series gas and an oxidization gas into the furnace, and the supply of the hydrocarbon series gas is stopped either when the quantity of a residual CH.sub.4 in the furnace is changed to increasing from decreasing, or when a partial pressure of oxygen in the furnace reaches a predetermined value.
Abstract:
In a method of and apparatus for controlling an atmosphere in a heat treatment furnace according to the present invention, a carburizing is carried out while supplying a hydrocarbon series gas and an oxidization gas into the furnace. The quantity of a residual CH.sub.4, a partial pressure of the oxidization gas and a partial pressure of CO are measured. The quantity of each gas to be supplied into the furnace is controlled according to either one of the values of the partial pressures.