Abstract:
A structure of the plasma treatment apparatus is employed in which an upper electrode has projected portions provided with first introduction holes and recessed portions provided with second introduction holes, the first introduction hole of the upper electrode is connected to a first cylinder filled with a gas which is not likely to be dissociated, the second introduction hole is connected to a second cylinder filled with a gas which is likely to be dissociated, the gas which is not likely to be dissociated is introduced into a reaction chamber from an introduction port of the first introduction hole provided on a surface of the projected portion of the upper electrode, and the gas which is likely to be dissociated is introduced into the reaction chamber from an introduction port of the second introduction hole provided on a surface of the recessed portion.
Abstract:
An object is to provide a semiconductor device including an oxide semiconductor film, which has stable electrical characteristics and high reliability. A stack of first and second material films is formed by forming the first material film (a film having a hexagonal crystal structure) having a thickness of 1 nm to 10 nm over an insulating surface and forming the second material film having a hexagonal crystal structure (a crystalline oxide semiconductor film) using the first material film as a nucleus. As the first material film, a material film having a wurtzite crystal structure (e.g., gallium nitride or aluminum nitride) or a material film having a corundum crystal structure (α-Al2O3, α-Ga2O3, In2O3, Ti2O3, V2O3, Cr2O3, or α-Fe2O3) is used.
Abstract translation:本发明的目的是提供一种具有稳定的电气特性和高可靠性的氧化物半导体膜的半导体装置。 通过在绝缘表面上形成厚度为1nm至10nm的第一材料膜(具有六方晶体结构的膜)形成第一和第二材料膜的叠层,并形成具有六方晶系结构的第二材料膜( 使用第一材料膜作为核的结晶氧化物半导体膜)。 作为第一材料膜,具有纤锌矿晶体结构的材料膜(例如氮化镓或氮化铝)或具有刚玉晶体结构的材料膜(α-Al 2 O 3,α-Ga 2 O 3,In 2 O 3,Ti 2 O 3,V 2 O 3,Cr 2 O 3,或 α-Fe 2 O 3)。
Abstract:
There is disclosed a honeycomb structure including a honeycomb structure section including: porous partition walls to divide and form a plurality of cells which extend from one end surface to the other end surface and become through channels of a fluid; and an outer peripheral wall positioned in an outermost periphery. The partition walls and the outer peripheral wall contain silicon carbide particles as an aggregate, and silicon as a binder to bind the silicon carbide particles, thicknesses of the partition walls are from 50 to 200 μm, a cell density is from 50 to 150 cells/cm2, an average particle diameter of silicon carbide as the aggregate is from 3 to 40 μm, and a volume resistivity at 400° C. is from 1 to 40 Ωcm.
Abstract translation:公开了一种蜂窝结构体,其包括蜂窝结构部分,该蜂窝结构部分包括:多孔分隔壁,用于分隔并形成从一个端面延伸到另一端面的多个单元,并且通过流体通道; 以及位于最外周的外周壁。 分隔壁和外周壁包含作为骨料的碳化硅颗粒和作为粘结剂的硅作为结合碳化硅颗粒的分隔壁,隔壁的厚度为50至200μm,电池密度为50至150个/ cm 2,作为骨料的碳化硅的平均粒径为3〜40μm,400℃下的体积电阻率为1〜40Ω·cm。
Abstract:
An object is to provide an n-channel transistor and a p-channel transistor having a preferred structure using an oxide semiconductor. A first source or drain electrode which is electrically connected to a first oxide semiconductor layer and is formed using a stacked-layer structure including a first conductive layer containing a first material and a second conductive layer containing a second material, and a second source or drain electrode which is electrically connected to a second oxide semiconductor layer and is formed using a stacked-layer structure including a third conductive layer containing the first material and a fourth conductive layer containing the second material are included. The first oxide semiconductor layer is in contact with the first conductive layer of the first source or drain electrode, and the second oxide semiconductor layer is in contact with the third and the fourth conductive layers of the second source or drain electrode.
Abstract:
The present invention relates to a microscopic image capturing apparatus having a structure that, in scanning an imageable area of an imaging unit in a predetermined direction in an imaging object area, in which a sample is present, can reliably set a focal point of the imaging unit on each imaging position set inside the imaging object area regardless of the type of focusing actuator. The microscopic image capturing apparatus has a sample setting stage having a sample setting surface that is inclined with respect to a scan plane orthogonal to an optical axis of an objective lens. By moving the sample setting stage along the scan plane such that the distance in the optical axis direction between the imaging unit and the sample setting surface varies monotonously, the focal point position of the imaging unit is adjusted in only one direction along the optical axis of the objective lens.
Abstract:
In a double-lock reclining seat, there is provided a mechanism for preventing two reclining lock mechanisms from being unlocked due to a collision load applied from a baggage or the like, without deforming the reclining lock mechanisms themselves, for example, without bending a connecting shaft of the two reclining lock mechanisms, or without adding any complicated mechanism changes to the interior of the reclining lock mechanisms. The double-lock reclining seat includes a load receiver 10 is fixed onto the connection shaft 5 of the two reclining lock mechanisms so as to extend obliquely downward from the rear side thereof, so that, as the load is applied to the back portion of the seat back from the baggage or the like, the load receiver 10 holds the connecting shaft 5 in a direction in which the two reclining lock mechanisms are locked.
Abstract:
It is an object to provide a liquid crystal display device and an electronic device of which aperture ratio increases. The present invention includes a substrate having an insulating surface, a transistor formed over the substrate, a pixel electrode electrically connected to the transistor. The transistor includes a gate electrode, a gate insulating layer over the gate electrode, a semiconductor layer having a microcrystalline structure over the gate insulating layer, and a buffer layer over the semiconductor layer having the microcrystalline structure. The channel width W of the transistor and the channel length L of the transistor satisfy a relation of 0.1≦W/L≦1.7.
Abstract translation:本发明的目的是提供一种开口率增加的液晶显示装置和电子装置。 本发明包括具有绝缘表面的衬底,形成在衬底上的晶体管,电连接到晶体管的像素电极。 晶体管包括栅电极,栅电极上的栅极绝缘层,在栅极绝缘层上具有微晶结构的半导体层,以及在具有微晶结构的半导体层上的缓冲层。 晶体管的沟道宽度W和晶体管的沟道长度L满足关系式为0.1≦̸ W / L≦̸ 1.7。
Abstract:
A position detection system is formed by network connection of a plurality of interrogators and a server. An RFID and the interrogators communicate wirelessly, whereby a distance from each interrogator to the RFID is searched to search a position of the RFID from the distance. In order to calculate the distance from the interrogator to the RFID, a signal is oscillated with a frequency corresponding to amplitude of a signal received in the RFID from the interrogator. A frequency of a signal oscillated in the RFID is detected in the RFID or by the interrogator, whereby a distance from the interrogator to the RFID is detected.
Abstract:
A microcrystalline semiconductor film with high crystallinity is manufactured. In addition, a thin film transistor with excellent electric characteristics and high reliability, and a display device including the thin film transistor are manufactured with high productivity. A deposition gas containing silicon or germanium is introduced from an electrode including a plurality of projecting portions provided in a treatment chamber of a plasma CVD apparatus, glow discharge is caused by supplying high-frequency power, and thereby crystal particles are formed over a substrate, and a microcrystalline semiconductor film is formed over the crystal particles by a plasma CVD method.
Abstract:
An audio processing apparatus generates a suppression coefficient sequence that is composed of coefficient values corresponding to frequency components of an audio signal, the frequency components being multiplied by the corresponding coefficient values to suppress noise components of the audio signal. In the audio processing apparatus, a characteristic value calculation unit calculates a noise characteristic value depending on a shape of a magnitude distribution of the audio signal. An intensity setting unit variably sets a suppression intensity of the noise components based on the noise characteristic value. A coefficient sequence generation unit generates the suppression coefficient sequence based on the audio signal and the suppression intensity.