Abstract:
A catheter comprises a first catheter shaft comprising a wall. The wall comprises at least one section of electroactive polymer having an actuated state and a non-actuated state and defines a first lumen. In the actuated state the first lumen haves a first diameter and in the non-actuated state the first lumen haves a second diameter, the first diameter being different than the second diameter.
Abstract:
An expandable medical balloon having at least one static state, at least one expanded state, and at least one deflated state, the expandable medical balloon including at least one active region, the at least one active region including electroactive polymer.
Abstract:
A medical device having at least one static state, at least one activated state, and at least one active region including electroactive polymer (EAP) capable of fine electro-activated movements. The EAP movements include bending components for proper alignment, rotating components for proper fittings, making components more rigid or flexible, and increasing and decreasing the volume of components. The fine movements allow for highly versatile and adaptable medical devices.
Abstract:
An expandable medical balloon having at least one static state, at least one expanded state, and at least one deflated state, the expandable medical balloon including at least one active region, the at least one active region including electroactive polymer.
Abstract:
A catheter assembly includes a catheter shaft having a proximal portion and a distal portion, the catheter shaft having a torsionally weakened region at the distal portion, the torsionally weakened region including one or more portions that are recessed from an outer surface of the catheter shaft. The assembly also includes a primary guidewire lumen defined in the catheter shaft and sized to receive a primary guidewire, and an inflatable member positioned at the distal portion of the catheter shaft.
Abstract:
A system to deliver or remove an inflation expandable stent in a body vessel. The system avoids causing damage or embolisms to a body vessel it is traversing by restraining the edges of the stent from scraping against the walls of the body vessel. The edges are restrained by balloon folds, compressive wedging, and angled reflective resistance. In addition the device can also inflate or deflate the balloon more efficiently.
Abstract:
An expandable medical balloon having at least one static state, at least one expanded state, and at least one deflated state, the expandable medical balloon including at least one active region, the at least one active region including electroactive polymer.
Abstract:
An expandable medical balloon having at least one static state, at least one expanded state, and at least one deflated state, the expandable medical balloon including at least one active region, the at least one active region including electroactive polymer.
Abstract:
A catheter comprises a first catheter shaft comprising a wall. The wall comprises at least one section of electroactive polymer having an actuated state and a non-actuated state and defines a first lumen. In the actuated state the first lumen haves a first diameter and in the non-actuated state the first lumen haves a second diameter, the first diameter being different than the second diameter.
Abstract:
A catheter system comprises a catheter comprising a distal portion, a proximal portion and an inner shaft. The inner shaft comprises a medical device receiving region for receiving and carrying a medical device. The retaining device is at least partially constructed of an electroactive polymer. The retaining device is located on or adjacent to the medical device receiving region. The electroactive polymer of the retaining device has an activated state and an inactivated state. The retaining device is capable of retaining a medical device to the catheter and releasing the medical device from the catheter by transitioning between the activated state and the inactivated state.