Abstract:
Direct and absolute pointing is provided for with respect to a two-dimensional information display surface, much like how one would point a laser pointer or flashlight at a desired point. The displayed control may be moved by manipulating the pointing device in three dimensions. The translational position of the pointing device may be measured in three dimensions. Also, the three-dimensional orientation of the pointing device may be measured. A computing device may receive this information from the pointing device and determine where the pointing device is pointing to. If the pointing device is pointing at a display, then the computing device may cause the control to be displayed at the position to which the pointing device is pointing. In addition, the control may be displayed at an orientation that depends upon the orientation of the pointing device.
Abstract:
A system and process for helping users enter information in an Asian language is described. In some aspects, pinyin input for Chinese is described with respect to dedicated keys of a keyboard.
Abstract:
Described is a technology by which personal information that comes into a computer system is intelligently managed according to current state data including user presence and/or user attention data. Incoming information is processed against the state data to determine whether corresponding data is to be output, and if so, what output modality or modalities to use. For example, if a user is present and busy, a notification may be blocked or deferred to avoid disturbing the user. Cost analysis may be used to determine the cost of outputting the data. In addition to user state data, the importance of the information, other state data, the cost of converting data to another format for output (e.g., text-to-speech), and/or user preference data, may factor into the decision. The output data may be modified (e.g., audio made louder) based on a current output environment as determined via the state data.
Abstract:
Optical tracking systems, method, and devices are described in which optical components detect light within a substantially planar region adjacent to a user device. Tracking logic may receive signals output by the optical components and determine coordinates associated with a movement of a pointing object through the substantially planar region. The tracking logic may then provide for translation of the coordinates into an action on a display, such as, for example, a movement of a cursor or other icon on the display.
Abstract:
Multi-modal, multi-lingual devices can be employed to consolidate numerous items including, but not limited to, keys, remote controls, image capture devices, audio recorders, cellular telephone functionalities, location/direction detectors, health monitors, calendars, gaming devices, smart home inputs, pens, optical pointing devices or the like. For example, a corner of a cellular telephone can be used as an electronic pen. Moreover, the device can be used to snap multiple pictures stitching them together to create a panoramic image. A device can automate ignition of an automobile, initiate appliances, etc. based upon relative distance. The device can provide for near to eye capabilities for enhanced image viewing. Multiple cameras/sensors can be provided on a single device to provide for stereoscopic capabilities. The device can also provide assistance to blind, privacy, etc. by consolidating services.
Abstract:
An input device is disclosed that includes a sensor for editing characters and text units. The sensor has an elongate configuration and is laterally-oriented with respect to sides of the input device. The input device also includes a plurality of keys for entering individual characters or multiple characters that form the text units. By contacting the sensor, an incorrectly-entered text unit may be selected and replaced with an intended text unit. In order to select the incorrectly-entered text unit, the sensor may be contacted in a position that corresponds with a position of the text unit with respect to a display screen.
Abstract:
A laser range finder includes a laser and a photosensitive element. The laser projects a beam onto a target surface. A backscattered portion of the laser beam returns to the laser from the target surface and enters the laser emitting cavity. Variations in laser output power are detected by the photosensitive element, which provides a “beat” signal to a frequency detection circuit. The frequency detection circuit includes a difference frequency analog phase locked loop (DFAPLL) providing a purified form of the beat signal. The frequency of the purified beat signal is determined and used to calculate distance to the target surface.
Abstract:
A multi-modal multi-lingual mobile device that facilitates intelligently automating an action. The device can automatically synchronize a user schedule based upon a user state, intention, preference and/or limitation. The device can employ sensors to automatically detect criteria by which to automatically implement an action. Moreover, the system can interrogate a user thus converging upon a user intention and/or preference. An analyzer component can intelligently evaluate the compiled criterion in order to automatically perform an action. The multi-modal multi-lingual mobile device can automatically facilitate identification of an individual. Other actions that are automatically performed can include modifying personal information manager data, translating languages into a language comprehendible to a user, etc. Implementation of these actions can be based at least in part upon an environmental factor, a conversation, a location factor and a temporal factor.
Abstract:
A laser range finder includes a laser and a photosensitive element. The laser projects a beam onto a target surface. A backscattered portion of the laser beam returns to the laser from the target surface and enters the laser emitting cavity. Variations in laser output power are detected by the photosensitive element, which provides a “beat” signal to a frequency detection circuit. The frequency detection circuit includes a difference frequency analog phase locked loop (DFAPLL) providing a purified form of the beat signal. The frequency of the purified beat signal is determined and used to calculate distance to the target surface.
Abstract:
Multi-modal, multi-lingual devices can be employed to consolidate numerous items including, but not limited to, keys, remote controls, image capture devices, audio recorders, cellular telephone functionalities, location/direction detectors, health monitors, calendars, gaming devices, smart home inputs, pens, optical pointing devices or the like. For example, a corner of a cellular telephone can be used as an electronic pen. Moreover, the device can be used to snap multiple pictures stitching them together to create a panoramic image. A device can automate ignition of an automobile, initiate appliances, etc. based upon relative distance. The device can provide for near to eye capabilities for enhanced image viewing. Multiple cameras/sensors can be provided on a single device to provide for stereoscopic capabilities. The device can also provide assistance to blind, privacy, etc. by consolidating services.