Abstract:
A laser sensor module includes a first laser source configured to emit first modulated light, the first modulated light being modulated laser light. The laser sensor module further includes circuitry configured to drive the first laser source with a first modulated driving current to cause the first laser source to emit the modulated laser light, a detector configured to detect the modulated laser light, which induces a photocurrent with variations resulting from modulation of the modulated laser light, and a second laser source configured to emit second modulated light. The circuitry is further configured to drive the second laser source with a second modulated driving current to cause the second laser source to emit the second modulated light. The detector is configured to detect the second modulated light. The circuitry is configured to adapt the amplitude of the second modulated driving current to induce a contribution to the photocurrent.
Abstract:
A safety assembly for use with a laser-directed energy weapon is disclosed. The assembly comprises a control system comprising a photodetector and a processing unit; and an optical device configured to attach to a target such that, when attached, the optical device provides a light beam to the photodetector. The processing unit is arranged to compare the received light beam against one or more predetermined attributes, and to permit the laser-directed energy weapon to fire only when the received light beam is determined to have the one or more attributes.
Abstract:
Embodiments described herein generally relate to an apparatus and method for performing photolithography processes. More particularly, embodiments described herein generally relate to an apparatus and method for the digital control of optical-coupled solid state relays employed on a laser diode. Digital control of the optical-coupled solid state relays may allow for the turning on and/or turning off of the optical-coupled solid state relays and allow for the failure detection of each laser diode. Furthermore, the embodiments described herein allow for an increase in current provided to the laser diodes such that overall laser diode output for optimized illumination may be maintained while life time and tool reliability are also increased.
Abstract:
A method for producing an integrated micromechanical fluid sensor component includes forming a first wafer with a first Bragg reflector and with a light-emitting device on a first substrate. The light-emitting device is configured to emit light rays in an emission direction from a surface of the light-emitting device facing away from the first Bragg reflector. The method further includes forming a second wafer with a second Bragg reflector and with a photodiode on a second substrate. The photodiode is arranged on a surface of the second Bragg reflector facing towards the second substrate. The method also includes bonding or gluing the first wafer to the second wafer such that there is formed a cavity into which a fluid is introduced and through which the light rays can pass. The method further includes separating the fluid sensor component from the first and the second wafer.
Abstract:
Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10−9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.
Abstract:
A dual usage HCG VCSEL detector is provided with a high contrast grating (HCG) reflector first reflector that has a two dimensional periodic structure. The two dimensional structure is a periodic structure that is a symmetric structure with periodic repeating. The symmetrical structure provides that polarization modes of light are undistinguishable. A second reflector is in an opposing relationship to the first reflector. A tunable optical cavity is between the first and second reflectors. An active region is positioned in the cavity between the first and second reflectors. The photodetector is polarization independent. An MQW light absorber is included converts light to electrons. A dual usage HCG VCSEL-detector includes a high contrast grating (HCG) reflector first reflector, and a second reflector in an opposing relationship to the first reflector. A tunable optical cavity is between the first and second reflectors. An active region is positioned in the cavity between the first and second reflectors. The dual usage HCG VCSEL-detector that operates as a dual usage HCG VCSEL and as a tunable photodetector.
Abstract:
Cavity enhanced absorption spectroscopy systems and methods for detecting trace gases using a resonance optical cavity, which contains a gas mixture to be analyzed, and a laser coupled to the cavity by optical feedback. The cavity has any of a variety of configurations with two or more mirrors, including for example a linear cavity, a v-shaped cavity and a ring optical cavity. The cavity will have multiple cavity resonant modes, or a comb of frequencies spaced apart, as determined by the parameters of the cavity, including the length of the cavity, as is well known. Systems and methods herein also allow for optimization of the cavity modes excited during a scan and/or the repetition rate.
Abstract:
There is provided a light source including a mode-lock laser unit that includes a semiconductor laser and an external resonator unit and emits a laser beam having a predetermined frequency, the semiconductor laser including a saturable absorber unit that applies a reverse bias voltage and a gain unit that applies a gain current, a semiconductor optical amplifier that performs amplification modulation on the laser beam emitted from the mode-lock laser unit, a laser clock generating unit that generates a laser clock synchronized with the laser beam based on a signal detected from the saturable absorber unit when the laser beam oscillates in the mode-lock laser unit, and a modulating unit that generates a driving current synchronized with the laser clock and applies the driving current to the semiconductor optical amplifier.
Abstract:
A device (10) for the optical measurement of a physical parameter includes: a laser light source (11) for generating a measurement beam in the direction of a target (20) and for receiving the measurement beam reflected by the target; the measurement beam travelling along an optical path whose variation depends on the physical parameter to be determined and the laser light source having an optical cavity (111); a motion sensor (14) for the laser light source (11); elements (15) for calculating the physical parameter from a signal measured at the laser light source (11) and a signal measured by the motion sensor (14).
Abstract:
A laser-induced optical wiring apparatus includes a substrate, first and second light-reflecting members provided on the substrate separately from each other, an optical waveguide provided on the substrate for optically coupling the first and second light-reflecting members to form an optical resonator, a first optical gain member provided across the optical waveguide and forming a laser oscillator along with the first and second light-reflecting members, and a second optical gain member provided across the optical waveguide separately from the first optical gain member, and forming another laser oscillator along with the first and second light-reflecting members.