摘要:
There is provided an oxidant and dopant which can produce a conductive polymer. The conductive polymer can be used in a solid electrolyte capacitor as solid electrolyte. The solid electrolyte capacitor can be provided with improved breakdown voltage and voltage resistance, as well as less generation of the defects due to leak current. There is provided an oxidant and dopant solution for conductive polymer production including an oxidant and dopant for an organic ferric sulfonate, and an alcohol with a carbon number of 1 to 4. The oxidant and dopant solution further includes a compound with a glycidyl group, or its ring-opened compound. Faborably, a polyalcohol is further added. Using the oxidant and dopant solution, a thiophene or its derivative is subject to an oxidation polymerization to prepare a conductive polymer, which can be used as solid electrolyte of a solid electrolyte capacitor.
摘要:
The present invention provides an agent serving as oxidant and dopant in which it does not generate precipitates in a state of an alcohol solution for a certain period of time and the oxidizing power is not too strong. By using the same, the present invention provides a conductive polymer having a high conductivity and heat resistance. By using the same, the present invention provides a solid electrolytic capacitor reliable under a high temperature condition. The present invention provides an agent serving as oxidant and dopant for conductive polymer production, the agent serving as oxidant and dopant comprising: a ferric salt of acids comprising a benzene sulfonic acid derivative represented by formula (1) and sulfuric acid. “R” represents an alkyl or alkoxy group having a carbon number of 1 to 4. More than 90 mole % of the benzene sulfonic acid derivative have R at the para position with respect to the SO3H group. Sulfuric acid is contained at 0.05 to 1.5 mass % in the acids. An alkali metal and alkali earth metal as an inorganic alkali component are included at a total content of 300 ppm or less (based on mass). ammonia and an amine as an organic alkali component are included at a total content of 0.01 mole % or less. A pH value is 1.5 to 3.0 when the agent serving as oxidant and dopant is made into an aqueous solution at a concentration of 8 mass %.
摘要:
The present invention provides an agent serving as oxidant and dopant in which it does not generate precipitates in a state of an alcohol solution for a certain period of time and the oxidizing power is not too strong. By using the same, the present invention provides a conductive polymer having a high conductivity and heat resistance. By using the same, the present invention provides a solid electrolytic capacitor reliable under a high temperature condition. The present invention provides an agent serving as oxidant and dopant for conductive polymer production, the agent serving as oxidant and dopant comprising: a ferric salt of acids comprising a benzene sulfonic acid derivative represented by formula (1) and sulfuric acid. “R” represents an alkyl or alkoxy group having a carbon number of 1 to 4. More than 90 mole % of the benzene sulfonic acid derivative have R at the para position with respect to the SO3H group. Sulfuric acid is contained at 0.05 to 1.5 mass % in the acids. An alkali metal and alkali earth metal as an inorganic alkali component are included at a total content of 300 ppm or less (based on mass). ammonia and an amine as an organic alkali component are included at a total content of 0.01 mole % or less. A pH value is 1.5 to 3.0 when the agent serving as oxidant and dopant is made into an aqueous solution at a concentration of 8 mass %.
摘要:
The present invention provides a solid electrolytic capacitor having a low ESR, excellent heat resistance, and reliability used under a high temperature condition. On the dielectric layer of the capacitor element, 2-alkyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine monomer is subject to oxidation polymerization to provide a first conductive polymer layer. Then, 2,3-dihydro-thieno[3,4-b][1,4]dioxine or a monomer mixture of 2,3-dihydro-thieno[3,4-b][1,4]dioxine and 2-alkyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine is subject to oxidation polymerization to provide a second conductive polymer layer. The formation of the first conductive polymer layer and the second conductive polymer layer is alternatively repeated. The first conductive polymer and the second conductive polymer serve as a solid electrolyte to provide a solid electrolytic.
摘要:
The present invention provides a solid electrolytic capacitor having a low ESR, excellent heat resistance, and reliability used under a high temperature condition. On the dielectric layer of the capacitor element, 2-alkyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine monomer is subject to oxidation polymerization to provide a first conductive polymer layer. Then, 2,3-dihydro-thieno[3,4-b][1,4]dioxine or a monomer mixture of 2,3-dihydro-thieno[3,4-b][1,4]dioxine and 2-alkyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine is subject to oxidation polymerization to provide a second conductive polymer layer. The formation of the first conductive polymer layer and the second conductive polymer layer is alternatively repeated. The first conductive polymer and the second conductive polymer serve as a solid electrolyte to provide a solid electrolytic.
摘要:
There is provided an oxidant and dopant which can produce a conductive polymer. The conductive polymer can be used in a solid electrolyte capacitor as solid electrolyte. The solid electrolyte capacitor can be provided with improved breakdown voltage and voltage resistance, as well as less generation of the defects due to leak current. There is provided an oxidant and dopant solution for conductive polymer production including an oxidant and dopant for an organic ferric sulfonate, and an alcohol with a carbon number of 1 to 4. The oxidant and dopant solution further includes a compound with a glycidyl group, or its ring-opened compound. Faborably, a polyalcohol is further added. Using the oxidant and dopant solution, a thiophene or its derivative is subject to an oxidation polymerization to prepare a conductive polymer, which can be used as solid electrolyte of a solid electrolyte capacitor.