摘要:
A method of forming a semiconductor device on a heavily doped P-type (110) semiconductor layer over a metal substrate includes providing a first support substrate and forming a P-type heavily doped (110) silicon layer overlying the first support substrate. At least a top layer of the first support substrate is removable by a selective etching process with respect to the P-type heavily doped (110) silicon layer. A vertical semiconductor device structure is formed in and over the (110) silicon layer. The vertical device structure includes a top metal layer and is characterized by a current conduction in a direction. The method includes bonding a second support substrate to the top metal layer and removing the first support substrate using a mechanical grinding and a selective etching process to expose a surface of the P-type heavily doped (110) silicon layer and to allow a metal layer to be formed on the surface.
摘要:
Semiconductor devices containing a CVD BPSG layer and an undoped CVD oxide cap layer are described. The cap layer can be any silicon oxide material with a thickness between about 50 Å and about 350 Å. The cap layer may be formed using a low temperature CVD process that is controlled for density by adjusting the amount of silicon precursor in the gas-phase. In some embodiments, the cap layer is deposited on the BPSG layer followed immediately by the BPSG film deposition prior to any annealing of the BPSG layer. The cap layer may prevent dopant out-diffusion and/or out-gassing during storage and high-temperature annealing, and moisture penetration into the BPSG layer, as well as suppress defect nucleation on the as-deposited BPSG surface and defect formation during high temperature annealing, while still allowing flow ability of the BPSG layer. Other embodiments are also described.
摘要:
A method of forming a semiconductor device on a heavily doped P-type (110) semiconductor layer over a metal substrate includes providing a first support substrate and forming a P-type heavily doped (110) silicon layer overlying the first support substrate. At least a top layer of the first support substrate is removable by a selective etching process with respect to the P-type heavily doped (110) silicon layer. A vertical semiconductor device structure is formed in and over the (110) silicon layer. The vertical device structure includes a top metal layer and is characterized by a current conduction in a direction. The method includes bonding a second support substrate to the top metal layer and removing the first support substrate using a mechanical grinding and a selective etching process to expose a surface of the P-type heavily doped (110) silicon layer and to allow a metal layer to be formed on the surface
摘要:
A vertical semiconductor device includes a bottom metal layer and a first P-type semiconductor layer overlying the bottom metal layer. The first P-type semiconductor layer is characterized by a surface crystal orientation of (110) and a first conductivity. The first P-type semiconductor layer is heavily doped. The vertical semiconductor device also includes a second P-type semiconductor layer overlying the first P-type semiconductor layer. The second semiconductor layer has a surface crystal orientation of (110) and is characterized by a lower conductivity than the first conductivity. The vertical semiconductor device also has a top metal layer overlying the second P-type semiconductor layer. A current conduction from the top metal layer to the bottom metal layer and through the second p-type semiconductor layer is characterized by a hole mobility along a crystalline orientation and on (110) crystalline plane.
摘要:
Semiconductor devices containing a CVD BPSG layer and an undoped CVD oxide cap layer are described. The cap layer can be any silicon oxide material with a thickness between about 50 Å and about 350 Å. The cap layer may be formed using a low temperature CVD process that is controlled for density by adjusting the amount of silicon precursor in the gas-phase. In some embodiments, the cap layer is deposited on the BPSG layer followed immediately by the BPSG film deposition prior to any annealing of the BPSG layer. The cap layer may prevent dopant out-diffusion and/or out-gassing during storage and high-temperature annealing, and moisture penetration into the BPSG layer, as well as suppress defect nucleation on the as-deposited BPSG surface and defect formation during high temperature annealing, while still allowing flow ability of the BPSG layer. Other embodiments are also described.
摘要:
An apparatus, method and system for collection of physiological electrical potential signals. In one embodiment, an apparatus for use in measuring electrical potentials in a subject (e.g. an animal or a human), having an amplifier being removably mountable to a ground electrode and electrically coupled to at least two signal electrodes, wherein the amplifier is configured to communicate with a signal processing device and indicate if one of the at least two signal electrodes is poorly affixed to, or detached from, said subject. In another embodiment, the at least two signal electrodes comprise a first signal electrode and a second signal electrode, and the amplifier is configured to detect differential electrical potential signals presented by the first signal electrode and the second signal electrode, amplify the differential electrical potential signals by a predetermined gain level to generate an amplified signal, and transmit the amplified signal to the signal processing device.
摘要:
The invention relates to electrical network communications engineering and can be used in systems for automatic data collection from electric, heat, water, gas meters etc. The technical result is significant simplification of the interior structure of slave units increased noise stability of a system. This result is achieved by using zero crossing points of the fundamental harmonic of system supply line voltage as character synchronization events.
摘要:
An invention is disclosed that provides an apparatus, method and system for the collection of physiological electrical potential signals. In one embodiment, the apparatus comprises integrating amplifier and an electrode into a combined unit for attaching or affixing to a subject (e.g., an animal or a human). Resulting from the extremely small or short connection between the conductive portion of the electrode and the amplifier, significantly less noise is introduced into the signal detected by the amplifier. The amplifier thus amplifies a signal with a much higher signal-to-noise ratio as compared with conventional electrode to lead wire to amplifier arrangements.
摘要:
The invention relates to electrical network communications engineering and can be used for automatic data acquisition from intrusion and fire-alarm sensors, electric meters, heat, water and gas consumption meters and from the fiscal memory of cash control monitors. Said invention makes it possible to substentially reduce the energy consumption by the slave nodes of a system and/or increase the range of action thereof. In order to encode each symbol of transmitted data, a random or pseudorandom set of differences of initial pairs of nearest harmonic pairs are used. Said difference sets of the initial phases are selected in such a way that the peak factor of an added signal is minimised. When a fire-alarm sensor is actuated, it is sufficient to transmit only one symbol to an alarm panel which, unambiguously identifies the location of the active sensor and as a rule is embodied in the form of a conventional number or address pre-allocated to said sensor.
摘要:
A system and method for use in a real time system and for processing a signal with a low signal-to-noise ratio (SNR). The system comprises a model for modeling an expected signal and a filter that uses the model for filtering the signal. The filter is used for generating a prediction of the signal and an error variance matrix. The system further comprises an adaptive element for modifying the error variance matrix such that the bandwidth of the filter is widened, wherein the filter behaves like an adaptive filter.