摘要:
Memory devices and methods for operating such devices are described herein. A method as described herein includes applying a reset bias arrangement to a memory cell to change the resistance state from the lower resistance state to the higher resistance state. The reset bias arrangement comprises a first voltage pulse. The method further includes applying a set bias arrangement to the memory cell to change the resistance state from the higher resistance state to the lower resistance state. The set bias arrangement comprises a second voltage pulse, the second voltage pulse having a voltage polarity different from that of the first voltage pulse.
摘要:
Memory devices and methods for operating such devices are described herein. A method as described herein includes applying a reset bias arrangement to a memory cell to change the resistance state from the lower resistance state to the higher resistance state. The reset bias arrangement comprises a first voltage pulse. The method further includes applying a set bias arrangement to the memory cell to change the resistance state from the higher resistance state to the lower resistance state. The set bias arrangement comprises a second voltage pulse, the second voltage pulse having a voltage polarity different from that of the first voltage pulse.
摘要:
Phase change based memory devices and methods for operating described herein overcome the performance limitations of slow set speeds and long recovery times commonly associated with phase change memory devices, enabling high speed operation and extending their usefulness into high speed applications typically filled by DRAM and SRAM memory.
摘要:
Phase change based memory devices and methods for operating described herein overcome the performance limitations of slow set speeds and long recovery times commonly associated with phase change memory devices, enabling high speed operation and extending their usefulness into high speed applications typically filled by DRAM and SRAM memory.
摘要:
A programmable metallization device, comprises a first electrode; a memory layer electrically coupled to the first electrode and adapted for electrolytic formation and destruction of a conducting bridge therethrough; an ion-supplying layer containing a source of ions of a first metal element capable of diffusion into and out of the memory layer; a conductive ion buffer layer between the ion-supplying layer and the memory layer, and which allows diffusion therethrough of said ions; and a second electrode electrically coupled to the ion-supplying layer. Circuitry is coupled to the device to apply bias voltages to the first and second electrodes to induce creation and destruction of conducting bridges including the first metal element in the memory layer. The ion buffer layer can improve retention of the conducting bridge by reducing the likelihood that the first metallic element will be absorbed into the ion supplying layer.