Abstract:
Networked intelligent lighting devices may utilize visual light communication to perform autonomous neighbor discovery, for example, as part of a map generation process. Individually, each intelligent lighting device within an installation transmits a series of packets via visual light communication for receipt by one or more of the other intelligent lighting devices. Receiving intelligent lighting devices record the number of received packets from each transmitter. Records of numbers of received packets are conveyed via a data communication network to a centralized process. The centralized process utilizes the conveyed records to determine neighbor relationships between lighting devices, for example to generate a map of devices as located within the installation.
Abstract:
Networked intelligent lighting devices may utilize visual light communication to perform autonomous neighbor discovery, for example, as part of a map generation process. Individually, each intelligent lighting device within an installation transmits a series of packets via visual light communication for receipt by one or more of the other intelligent lighting devices. Receiving intelligent lighting devices record the number of received packets from each transmitter. Records of numbers of received packets are conveyed via a data communication network to a centralized process. The centralized process utilizes the conveyed records to determine neighbor relationships between lighting devices, for example to generate a map of devices as located within the installation.
Abstract:
Networked intelligent lighting devices may utilize visual light communication to perform autonomous neighbor discovery, for example, as part of a map generation process. Individually, each intelligent lighting device within an installation transmits a series of packets via visual light communication for receipt by one or more of the other intelligent lighting devices. Receiving intelligent lighting devices record the number of received packets from each transmitter. Records of numbers of received packets are conveyed via a data communication network to a centralized process. The centralized process utilizes the conveyed records to determine neighbor relationships between lighting devices, for example to generate a map of devices as located within the installation.
Abstract:
Networked intelligent lighting devices may utilize visual light communication to perform autonomous neighbor discovery, for example, as part of a map generation process. Individually, each intelligent lighting device within an installation transmits a series of packets via visual light communication for receipt by one or more of the other intelligent lighting devices. Receiving intelligent lighting devices record the number of received packets from each transmitter. Records of numbers of received packets are conveyed via a data communication network to a centralized process. The centralized process utilizes the conveyed records to determine neighbor relationships between lighting devices, for example to generate a map of devices as located within the installation.
Abstract:
A lighting system having at least three light sources receives an input relating to color coordinates of a target point representing a desired color characteristic for a combined output from the light sources. The system provides color tunable output and/or dimmable output in response to differences in user input. The system also corrects changes in performance of the light sources due to lifetime degradation in each of the light sources. After a period of system operation, outputs of the sources are measured. The system increases the luminosity outputs of each of the light sources by a respective amount relative to the degradations measured in all the light sources; in this manner, the luminosity outputs of the light sources remain substantially constant in relations to each other over the lifetime of the light sources.
Abstract:
A system provides white light having a selectable spectral characteristic (e.g. a selectable color temperature, delta uv, and intensity) using a combination of sources (e.g. LEDs) emitting light of three, four, five, or six different characteristics, for example, one or more white LEDs, and one or more LEDs of each of three primary colors, plus cyan and royal blue. A controller maintains a desired spectral characteristic, e.g. for white light at a selected point on or within a desired range of the black body curve. In addition, the controller provides selectable adjustments for values of the spectral characteristics, while maintaining substantially constant overall output intensity for the light output of White LEDs, thereby achieving Maximum Utilization.