Abstract:
A method and system for managing automatic guidance of an aircraft during a complete engine failure. Said system includes means for monitoring engines so as to be able to detect a complete failure of the engines; means for detecting whether the aircraft is in flight; means for detecting whether the aircraft is in a different guidance mode from a guidance mode configured to make the aircraft descend with a reduced engine thrust and a fixed speed; and control means for automatically bringing guidance means of the aircraft into a guidance configuration compatible with the situation associated with the complete failure of the engines.
Abstract:
A method and device for aiding piloting of an aircraft during an approach phase for the purpose of landing. The device includes a guidance system for guiding the aircraft according to a first guidance mode during an initial phase upstream of a transition point, then guiding the aircraft according to a second guidance mode during a terminal phase between the transition point and the landing, the device further including a computing system for automatically computing the coordinates of the transition point, the guidance system also configured for automatically disabling the second guidance mode upstream of the transition point.
Abstract:
A method for guiding an aircraft during its final approach to a landing runway, whereby the aircraft is guided during its approach by aircraft position information obtained from an GNSS satellite navigation system, wherein: prior to the start of the final approach a first time tFAF is determined corresponding with the start of said final approach and a second time tTD corresponding with the landing of the aircraft on said runway, then a set of satellites is determined of the satellite navigation system for excluding from the calculation of said aircraft position information during at least a part of the time interval comprised between said first and second times; and during the final approach, the aircraft position information is determined while excluding the information corresponding with all the satellites of said set of satellites and the aircraft is guided along its final approach path by said position information.
Abstract:
A method and system allowing fully autonomous automatic take-off using only images captured by cameras on the aircraft and avionics data. The system includes an image capture device on the aircraft to take a stream of images of the runway, image processing modules to estimate, on the basis of the streams of images, a preliminary current position of the aircraft on the runway and to assign a preliminary confidence index to the estimate. A data consolidation module can determine a relevant current position of the aircraft on the runway by consolidating data originating from the image processing modules with inertial data to correct the estimate of the preliminary current position and determine a relevant confidence index using a current speed of the wheels of the aircraft to refine the preliminary confidence index. A flight control computer can control and guide aircraft take-off.
Abstract:
A method and a system for controlling an emergency descent of an aircraft. The system (1) includes a unit (2) for detecting an emergency situation, a unit (11) for calculating a usual emergency descent command, a unit (12) for calculating a limited emergency descent command, a selection unit (14) configured for selecting the usual emergency descent command or, if application conditions are met and if the limited descent command is less than said usual emergency descent command and greater than a regulation emergency descent command, selecting the limited emergency descent command, and a unit (4) for application, to the aircraft, of the selected emergency descent command.
Abstract:
Method and device for aiding the piloting of an airplane during a landing phase for ensuring, during rollout on a landing runway, that in the nominal case the airplane will stop level with a selected exit, while guaranteeing that in the case of a fault the airplane will stop before the end of the runway.
Abstract:
A method and system allowing fully autonomous automatic take-off using only images captured by cameras on the aircraft and avionics data. The system includes an image capture device on the aircraft to take a stream of images of the runway, image processing modules to estimate, on the basis of the streams of images, a preliminary current position of the aircraft on the runway and to assign a preliminary confidence index to the estimate. A data consolidation module can determine a relevant current position of the aircraft on the runway by consolidating data originating from the image processing modules with inertial data to correct the estimate of the preliminary current position and determine a relevant confidence index using a current speed of the wheels of the aircraft to refine the preliminary confidence index. A flight control computer can control and guide aircraft take-off.
Abstract:
A method and system for managing automatic guidance of an aircraft during a complete engine failure. Said system includes means for monitoring engines so as to be able to detect a complete failure of the engines; means for detecting whether the aircraft is in flight; means for detecting whether the aircraft is in a different guidance mode from a guidance mode configured to make the aircraft descend with a reduced engine thrust and a fixed speed; and control means for automatically bringing guidance means of the aircraft into a guidance configuration compatible with the situation associated with the complete failure of the engines.
Abstract:
A method and device for displaying trim information on an airplane during a take-off, for determining and displaying a precise trim setpoint which enables the pilot, by following the displayed information, to carry out a manual take-off which is optimized from the performance point of view.
Abstract:
A method for guiding an aircraft during its final approach to a landing runway, whereby the aircraft is guided during its approach by aircraft position information obtained from an GNSS satellite navigation system, wherein: prior to the start of the final approach a first time tFAF is determined corresponding with the start of said final approach and a second time tTD corresponding with the landing of the aircraft on said runway, then a set of satellites is determined of the satellite navigation system for excluding from the calculation of said aircraft position information during at least a part of the time interval comprised between said first and second times; and during the final approach, the aircraft position information is determined while excluding the information corresponding with all the satellites of said set of satellites and the aircraft is guided along its final approach path by said position information.