Abstract:
Heat treatable aluminum alloy strips and methods for making the same are disclosed. The heat treatable aluminum alloy strips are continuously cast and quenched, with optional rolling occurring before and/or after quenching. After quenching, the heat treatable aluminum alloy strip is neither annealed nor solution heat treated.
Abstract:
The present application discloses wrought 2xxx Al—Li alloy products that are work insensitive. The wrought aluminum alloy products generally include from about 2.75 wt. % to about 5.0 wt. % Cu, from about 0.2 wt. % to about 0.8 wt. % Mg, where the ratio of copper-to-magnesium ratio (Cu/Mg) in the aluminum alloy is in the range of from about 6.1 to about 17, from about 0.1 wt. % to 1.10 wt. % Li, from about 0.3 wt. % to about 2.0 wt. % Ag, from 0.50 wt. % to about 1.5 wt. % Zn, up to about 1.0 wt. % Mn, the balance being aluminum, optional incidental elements, and impurities. The wrought aluminum alloy products may realize a low strength differential and in a short aging time due to their work insensitive nature.
Abstract:
High strength forged aluminum alloys and methods for producing the same are disclosed. The forged aluminum alloy products may have grains having a high aspect ratio in at least two planes, generally the L-ST and the LT-ST planes. The forged aluminum alloy products may also have a high amount of texture. The forged products may realize increased strength relative to conventionally prepared forged products of comparable product form, composition and temper.
Abstract:
High strength forged aluminum alloys and methods for producing the same are disclosed. The forged aluminum alloy products may have grains having a high aspect ratio in at least two planes, generally the L-ST and the LT-ST planes. The forged aluminum alloy products may also have a high amount of texture. The forged products may realize increased strength relative to conventionally prepared forged products of comparable product form, composition and temper.
Abstract:
New aluminum-magnesium-lithium alloys, and methods for producing the same are disclosed. The alloys generally contain 2.0-3.9 wt. % Mg, 0.1-1.8 wt. % Li, up to 1.5 wt. % Cu, up to 2.0 wt. % Zn, up to 1.0 wt. % Ag, up to 1.5 wt. % Mn, up to 0.5 wt. % Si, up to 0.35 wt. % Fe, 0.05 to 0.50 wt. % of a grain structure control element, up to 0.10 wt. % Ti, and up to 0.10 wt. % of any other element, with the total of these other elements not exceeding 0.35 wt. %, the balance being aluminum.
Abstract:
New Al—Li alloy bodies and methods of producing the same are disclosed. The new Al—Li alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new Al—Li alloy bodies may realize improved strength and other properties.
Abstract:
New HT aluminum alloy bodies and methods of producing the same are disclosed. The new HT aluminum alloy bodies contain 0.20-2.0 wt. % Mg, 0.10-1.5 wt. % Si, 0.01-1.0 wt. % Fe, and, 0.10-1.0 wt. % Cu, wherein, when Si+Cu
Abstract:
New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.
Abstract:
High strength forged aluminum alloys and methods for producing the same are disclosed. The forged aluminum alloy products may have grains having a high aspect ratio in at least two planes, generally the L-ST and the LT-ST planes. The forged aluminum alloy products may also have a high amount of texture. The forged products may realize increased strength relative to conventionally prepared forged products of comparable product form, composition and temper.
Abstract:
New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.