Abstract:
The present invention relation to a burner for a combustion chamber of a gas turbine with a mixing and injection device. The mixing and injection device includes a limiting wall that defines a gas-flow channel and at least two streamlined bodies, each extending in a first transverse direction into the gas-flow channel. Each streamlined body has two lateral surfaces that are arranged essentially parallel to the main-flow direction, the lateral surfaces being joined to one another at their upstream side to form a leading edge of the body and joined at their downstream side to form a trailing edge of the body. Each streamlined body has a cross-section perpendicular to the first transverse direction that is shaped as a streamlined profile. At least one of the streamlined bodies is provided with a mixing structure and with at least one fuel nozzle located at its trailing edge for introducing at least one fuel essentially parallel to the main-flow direction into the flow channel, wherein at least two of the streamlined bodies have different lengths along the first transverse direction such that they may be used for a can combustor. The invention also relates to a method of using said burner in a gas turbine.
Abstract:
The combustion device includes a burner, a combustion chamber downstream of the burner, a lance projecting into the burner for fuel and air injection, and a plenum that at least partly houses the burner. The plenum is connected to the inside of the lance to supply an oxidiser to it.
Abstract:
The invention discloses a method for operating a gas turbine with sequential combustion, which gas turbine includes a compressor, a first combustor with a first combustion chamber and first burners, which receives compressed air from the compressor, a second combustor with a second combustion chamber and second burners, which receives hot gas from the first combustor with a predetermined second combustor inlet temperature, and a turbine, which receives hot gas from the second combustor. The CO emission for part-load operation is reduced by reducing the second combustor inlet temperature for base-load operation of the gas turbine, and increasing the second combustor inlet temperature when decreasing the gas turbine load (RLGT) from base-load to part-load.
Abstract:
The combustion device includes a burner, a combustion chamber downstream of the burner, a lance projecting into the burner for fuel and air injection, and a plenum that at least partly houses the burner. The plenum is connected to the inside of the lance to supply an oxidiser to it.
Abstract:
The invention relates to a mixing arrangement for mixing a fuel with a stream of oxygen containing gas flowing along an axis in an axial channel, especially in the second combustor of a gas turbine with sequential combustion. The mixing is improved and the mixing length reduced by said mixing arrangement comprising an injector with at least one injector ring, which is passed by said stream of gas inside and outside.
Abstract:
A gas turbine is operated using a varying blend of a first fuel, preferably natural gas, and a second fuel that is hydrogen. The hydrogen concentration is varied depending on operating conditions in order to reduce emissions of CO and NOx, and/or to mitigate LBO. The fuel mixture is varied using a controller based on a combination of factors in a modular operation concept to address different issues according to relevant load limitations. A method of operating a gas turbine according to this modular operational concept is also provided.