Abstract:
The invention concerns energy delivery system and method for a gate drive unit controlling a thyristor-based valve (19). The system comprises at least one current transformer (22) located in the main current path of the valve.
Abstract:
The invention concerns energy delivery system and method for a gate drive unit controlling a thyristor-based valve (19). The system comprises at least one current transformer (22) located in the main current path of the valve.
Abstract:
The invention concerns a silicon devices/heatsinks stack assembly and a method to pull apart a faulty silicon device in said stack assembly. Said silicon devices/heatsinks stack assembly comprises an arrangement of many silicon devices disks, two adjacent silicon devices disks being separated by a flat heatsink device, each silicon device disk and each heatsink comprising a centering hole on its both faces, a centering pin placed between the adjacent centering holes of a silicon device disk and an adjacent heatsink device. Each heatsink device is pierced with two guide holes, at two opposite ends of this one.
Abstract:
The invention relates to a full Bridge module, for connecting an electrical device such as a DC capacitor to an electrical circuit. The full bridge module comprises: a first and a second terminal to connect to the electrical circuit; a third and a fourth terminal to connect to the electrical device. The full bridge module further comprises a first to a fourth switch that connect the first and the second terminal to the third and fourth terminal. The first and the second switches are arranged on a first surface, the third and the fourth switches being arranged on a second surface that is parallel to the first surface. The invention relates also to a Voltage-source converter.
Abstract:
The invention concerns a silicon devices/heatsinks stack assembly and a method to pull apart a faulty silicon device in said stack assembly. Said silicon devices/heatsinks stack assembly comprises an arrangement of many silicon devices disks, two adjacent silicon devices disks being separated by a flat heatsink device, each silicon device disk and each heatsink comprising a centering hole on its both faces, a centering pin placed between the adjacent centering holes of a silicon device disk and an adjacent heatsink device. Each heatsink device is pierced with two guide holes, at two opposite ends of this one.