Abstract:
The invention concerns a damper arrangement for reducing combustion-chamber pulsation arising inside a gas turbine, wherein the gas turbine includes at least one compressor, a primary combustor which is connected downstream to the compressor, and the hot gases of the primary combustor are admitted at least to an intermediate turbine or directly or indirectly to a secondary combustor. The hot gases of the secondary combustor are admitted to a further turbine or directly or indirectly to an energy recovery, wherein at least one combustor is arranged in a can-architecture. At least one combustor liner includes air passages, wherein at least one of the air passages is formed as a damper neck. The damper neck being actively connected to a damper volume, and the damper volume is part of a connecting duct extending between a compressor air plenum and the combustor.
Abstract:
The damper arrangement includes a plurality of interconnected volumes and a plurality of necks for connecting the damper to a combustion chamber at a plurality of contact points. The plurality of necks are connected to the plurality of volumes.
Abstract:
The invention relates to a method for operating a gas turbine, in which an oxygen-reduced gas and fresh air are delivered to a compressor of the gas turbine in a radially staged manner, the fresh air being delivered via an outer sector of the inlet cross section in relation to the axis of rotation of the compressor, and the oxygen-reduced gas being delivered via an inner sector of the inlet cross section in relation to the axis of rotation of the compressor.The invention relates, further, to a gas turbine power plant with a gas turbine having a compressor inlet which is followed by the flow duct of the compressor and which is divided into an inner sector and an outer sector, a feed for an oxygen-reduced gas being connected to the inner sector of the compressor inlet, and a fresh air feed being connected to the outer sector of the compressor inlet.
Abstract:
The invention refers to a sequential combustor arrangement including a first burner, a first combustion chamber, a mixer for admixing a dilution gas to the hot gases leaving the first combustion chamber during operation, a second burner, and a second combustion chamber arranged sequentially in a fluid flow connection. The mixer includes a plurality of injection pipes pointing inwards from the side walls of the mixer for admixing the dilution gas to cool the hot flue gases leaving the first combustion chamber with a low pressure drop. The disclosure further refers to a method for operating a gas turbine with such a combustor arrangement.
Abstract:
A combustor for a gas turbine that includes a front panel, an elongated sleeve with first end and second ends and a burner mounted in the sleeve. The second end of the sleeve seallessly mounted on the front panel. The sleeve and burner are configured to enable slidable mounted of the burner in the sleeve.