Abstract:
A land transport vehicle includes a traction motor; a capture device for contact with a power supply segment of an external power supply device and for connection to the traction motor; a communication unit to communicate with ground equipment associated with the power supply segment in a vicinity of which the land transport vehicle is currently traveling; an onboard controller connected to the communication unit; and an onboard power supply device for connection to the traction motor, the onboard controller being adapted to a) regulate the power supplied to the traction motor, b) receive a signal indicating an end of a zone with an external power supply, and c) command, after receiving the signal indicating the end of a zone, a transition from a power demand from the external power supply device toward a power demand from the onboard power supply device to power the traction motor.
Abstract:
A ground level power supply system includes a live track capable of being brought to a supply voltage and a neutral track for the return current, with the live track being constituted of rectangular segments; a first voltage source capable of supplying a low supply voltage and a second voltage source capable of supplying a high supply voltage, each segment being connected by a controlled selector either to the first voltage source, or to the second voltage source; a speedometer capable of measuring the speed of a vehicle travelling over a section of a roadway equipped with the system; and a selection device capable of acquiring the vehicle speed measured by the speedometer, then comparing the speed measured with a threshold speed, and controlling the selector based on the results of the comparison.
Abstract:
A device is electrically connected to first and second terminals of an energy collector and provided with first and second electrical contacts intended to be placed in contact, for the electrical supply of the energy collector, respectively with first and second conjugated electrical contacts of a supply device on the ground, in turn electrically connected to an electrical power source. The device has a mesh connecting the second electrical contact and an output terminal connected to the second terminal of the energy collector, the mesh having a diode inserted between the second electrical contact and the second terminal of the energy collector so as to avoid the circulation of a current toward the second terminal of the energy collector.
Abstract:
This system allows the positioning of a vehicle in a recharging position with respect to a pad of a recharging station, wherein the vehicle carries a shoe gear which, once the vehicle is in the recharging position, is moved to come into contact with the pad. This system comprises: on the ground side, a generation module of a magnetic field, a characteristic quantity of which is a function of the position relative to a reference point of the generation module; and, on the onboard side, a magnetic field measuring module to measure the characteristic quantity and compare it with a reference value, in order to control the movement of the vehicle and stop it at a position relative to the reference point, wherein the relative position corresponds to the recharging position.
Abstract:
The inventive system, of the conduction type, comprises: a pair of power supply tracks, comprising a so-called live conductive track (11), designed to be electrically connected to a voltage source, and a so-called neutral conductive track (12), for the current return, designed to be electrically connected to a reference potential (Vref), the neutral track traveling parallel to the live track on a first side thereof; and a protective conductive track (13), designed to be connected to a ground potential, the protective track traveling parallel to the live track (11) on a second side thereof, opposite the first side. The system is installed in a roadway such that the live, neutral and protective conductive tracks are flush with a surface (18) of the roadway (2).
Abstract:
A method for controlling a land transport vehicle traveling on a track, the track including, in a movement direction of the land transport vehicle, a zone with an external power supply adjacent to a zone without an external power supply to be traveled with an onboard power supply device, the zone with an external power supply including an external power supply device on the ground provided with a plurality of power supply segments arranged sequentially in the direction of the track, the land transport vehicle including at least one capture device adapted to be placed in contact with a power supply segment on the one hand and to be electrically connected to at least one traction motor on the other hand, the land transport vehicle further including an onboard power supply device adapted to be electrically connected to the or each traction motor.
Abstract:
An installation for recharging an energy storage means, such as a battery of an electric vehicle, by conduction of energy from an electric power source to the energy storage means, where the battery is electrically connected to an on-board device and provided with a plurality of electric contacts, and on the ground, a ground device, combined with the on-board device, is connected to the electric power source and includes a plurality of electric contacts, each electric contact of the ground device being able to be put into contact with a corresponding contact of the on-board device, and the installation being able to safely apply an electric recharging power issued by the electric power source to the battery, where the plurality of electric contacts of the on-board device and of the ground device exclusively includes a phase contact and neutral contact.
Abstract:
A ground level power supply system includes a live track capable of being brought to a supply voltage and a neutral track for the return current, with the live track being constituted of rectangular segments; a first voltage source capable of supplying a low supply voltage and a second voltage source capable of supplying a high supply voltage, each segment being connected by a controlled selector either to the first voltage source, or to the second voltage source; a speedometer capable of measuring the speed of a vehicle travelling over a section of a roadway equipped with the system; and a selection device capable of acquiring the vehicle speed measured by the speedometer, then comparing the speed measured with a threshold speed, and controlling the selector based on the results of the comparison.
Abstract:
A ground equipment for a transport system includes a track for a land transport vehicle; an external power supply device including a plurality of power supply segments arranged sequentially along the track, the plurality of power supply segments forming an external power supply zone, at least one end segment being situated in vicinity to one end of the external power supply zone adjacent to a zone with no external power supply, to be traveled with an onboard power supply device, a communication antenna being associated with the or each external power supply segments; and a controller adapted to power on the end segment and adapted to send, using an antenna associated with that end segment, a signal indicating the end of a zone with an external power supply in response to a presence signal of the land transport vehicle received by said antenna.
Abstract:
The inventive system, of the conduction type, comprises: a pair of power supply tracks, comprising a so-called live conductive track (11), designed to be electrically connected to a voltage source, and a so-called neutral conductive track (12), for the current return, designed to be electrically connected to a reference potential (Vref), the neutral track traveling parallel to the live track on a first side thereof; and a protective conductive track (13), designed to be connected to a ground potential, the protective track traveling parallel to the live track (11) on a second side thereof, opposite the first side. The system is installed in a roadway such that the live, neutral and protective conductive tracks are flush with a surface (18) of the roadway (2).