Abstract:
A method of operating a turbine unit, wherein recirculated exhaust gas is contacted with a cooling and absorption liquid in a packed bed. An exhaust gas treatment system for a turbine unit, wherein an exhaust gas recirculation line comprises a gas cooling and cleaning device having a packed bed for contacting the exhaust gas with a cooling and absorption liquid. A combined cycle power generating system, wherein an exhaust gas recirculation line comprises a gas cooling and cleaning device having a packed bed for contacting the exhaust gas from a gas turbine with a cooling and absorption liquid and wherein water utilized as a cooling medium for condensation of steam originating from a steam turbine, and the cooling and absorption liquid, are passed to a cooling tower.
Abstract:
The combustion and flue gas treatment system includes a furnace for combusting a fuel with an oxidizer generating a flue gas, ducting for the flue gas connected to a NOx removal unit and a SOx removal unit, and a recirculation line for recirculating a part of the flue gas back to the furnace. The SOx removal unit is located upstream of the NOx removal unit with reference to the flue gas flow. The recirculation line is connected to the ducting downstream the SOx removal unit.
Abstract translation:燃烧和烟道气处理系统包括用于燃烧燃料的炉子,其中产生烟道气的氧化剂,用于连接到NOx去除单元的烟道气的管道,以及SO x去除单元,以及用于再循环烟道的一部分的再循环管线 气体回炉 SO x去除单元参照烟气流动位于NOx去除单元的上游。 再循环管线连接到SOx去除单元下游的管道。
Abstract:
An arrangement of a flue gas treatment system and a combustion device includes a recirculation line to supply at least a part of the flue gas from the combustion device back to the combustion device, a selective catalytic reduction unit (SCR), a gas processing unit (GPU) to separate CO2 from the flue gas. The recirculation line departs upstream of the selective catalytic reduction unit (SCR), and the selective catalytic reduction unit (SCR) is upstream of the gas processing unit (GPU).
Abstract:
A method for removing NOx from flue gas by SCR includes supplying a reagent for the SCR reaction of NOx into the flue gas, then contacting the flue gas with a catalyst. Supplying the reagent includes supplying a less than stoichiometric amount of reagent, and after contacting the flue gas with a catalyst a final NOx removal step is provided.
Abstract:
The invention relates to a method for operating a gas turbine system, wherein the gas turbine system includes a compressor, a combustor, a heat recovery steam generator, a scrubber, a direct contact cooler. The method includes introducing the scrubbing fluid discharged from the scrubber into the direct contact cooler, contacting the scrubbing fluid in the direct contact cooler with the exhaust gas discharged from the heat recovery steam generator in order to remove a portion of nitrogen oxide therefrom; feeding the exhaust gas discharged from the direct contact cooler into the compressor. With the technical solution of the present invention, nitrogen oxide in the exhaust gas is reduced to a certain extent by means of used scrubbing fluid from the scrubber. This solution may improve the efficiency in reduction of nitrogen oxide with a simple and feasible manner.