Abstract:
The present invention relates to a gas turbine power generation system, that includes a hydrogen-cooled generator having hydrogen as coolant, a plant hydrogen storage, generator auxiliaries and an emergency power supply system. The power generation system includes a fuel cell using hydrogen as fuel. The fuel cell is supplied via a line with hydrogen fuel from the hydrogen filling of the hydrogen-cooled generator in case of failure or disruption of the power supply from the gas turbine power generation system. In a preferred embodiment the fuel cell is supplied with additional hydrogen via a line from the plant hydrogen storage and/or with additional hydrogen via a line from generator auxiliaries in case of failure or disruption of the power supply from the gas turbine power generation system.
Abstract:
A method for barring a rotor of a thermally loaded turbomachine includes stopping normal operation of the turbomachine; providing a barring device for rotating the rotor about a machine axis; coupling the barring device to the rotor; letting the rotor cool down during cool down of the rotor rotating the rotor by means of the barring device. A damage of the machine due to thermally induced buckling during the barring process is avoided by consecutively determining the force or torque applied to the rotor by the barring device for rotating the rotor and/or the circumferential speed of the rotor during barring. The rotation of the rotor is controlled by means of the barring device in dependence of the determined force or torque and/or circumferential speed in order to reduce a bending or imbalance of the rotor, which is due to a nonuniform temperature distribution on the rotor during cool down.
Abstract:
A method for positioning a rotor of a gas turbine automatically is provided that includes gathering data with a control unit, and processing this data to bring the rotor to a desired position which is set according a Human Machine Interface (HMI). The indication of the lay of the rotor to the control unit is done by a key phasor, which includes a sensor which gets a digital pulse for each revolution of a phasor cam wheel. This digital pulse is used to give the information of the lay of the rotor to the control unit.
Abstract:
It is proposed a gas turbine and a method to operate the gas turbine. A fluid is supplied to the gas turbine by means of fluid paths. A first fluid path is divided into a second and third fluid path. A first control valve controls a fluid mass flow in the first fluid path. A second control valve controls a ratio of fluid mass flows in the second and third fluid paths.