Abstract:
An electrical connection powder comprising particles obtained by pulverising a skeleton of open cell metal foam chosen from the group consisting of iron, cobalt, nickel and the alloys of same covered with at least one coating of tin or indium or one of the alloys of same, The paste is formed from this powder dispersed in a binder such as grease. The powder or paste is particularity useful for improving the conductivity of an electrical connection consisting of a terminal (20) linked to a cable (24) consisting of a plurality of strands (30, 32, 34) by means of a crimping ring (26).
Abstract:
A disconnecting device having a plurality of modules for disconnecting an electrical supply line of an intensity higher than 1000 A. Each module includes a tight contact casing (10) having at least one fixed-contact conductive element (12, 14) in contact with a mobile-contact conductive element (20, 26), and a mechanism for interrupting the contact between the fixed-contact element and the mobile-contact element so as to disconnect the supply line; metal connection bars (60, 62, and 64, 66) for connecting to a current input and to a current output; and intermediate conductive elements such as blades (68, 70, et 72, 74) connected to the connection bars and to the casing. At least one of the mobile-contact elements includes a silver pellet fixed to the surface of the element, allowing the contact resistance between the mobile-contact element and the fixed-contact element to be reduced by half.
Abstract:
A circuit for supplying electrical power at a rated direct current of 20-100 kA to an electrolysis cell is provided. The circuit comprises an upstream and a downstream busbar connected to each other with a short-circuiting device which, when closed by an actuating mechanism, allows the busbars to be electrically connected to each other. An anode bar is equipped with an anode connection interface and a cathode connection interface, for connection to the anode and cathode, respectively. The cathode connection interface is connected to the downstream busbar. The circuit comprises means for absorbing movement of elements of the circuit due to thermal expansion. A disconnector connected to the upstream busbar and to the anode bar is opened by an actuating mechanism and it electrically disconnects the upstream busbar and the anode bar from each other after a non-zero time interval Tm when the short-circuiting device has been closed.
Abstract:
Contact device adapted to be inserted between two contact surfaces of two conductors of an electrical connection provided with at least one bolt, the device being formed by a metal foam plate to reduce electrical resistance of the connection. The surface area of the metal foam plate is at least equal to the surface area in contact with the two conductors, and is approximately 1 to 2 mm thick. The metal foam plate includes at least one circular opening intended to contain the bolt and at least one first pre-cut located between the opening and an outer edge of the contact device. The pre-cut is made by cutting the foam plate over a part of its thickness so that it can be easily broken along the pre-cut, the pre-cut allowing the bolt to be passed through it during the installation of the contact device.
Abstract:
An electrical connection powder comprising particles obtained by pulverizing a skeleton of open cell metal foam chosen from the group consisting of iron, cobalt, nickel and the alloys of same covered with at least one coating of tin or indium or one of the alloys of same. The paste is formed from this powder dispersed in a binder such as grease. The powder or paste is particularity useful for improving the conductivity of an electrical connection consisting of a terminal (20) linked to a cable (24) consisting of a plurality of strands (30, 32, 34) by means of a crimping ring (26).
Abstract:
A disconnecting device having a plurality of modules for disconnecting an electrical supply line of an intensity higher than 1000 A. Each module includes a tight contact casing (10) having at least one fixed-contact conductive element (12, 14) in contact with a mobile-contact conductive element (20, 26), and a mechanism for interrupting the contact between the fixed-contact element and the mobile-contact element so as to disconnect the supply line; metal connection bars (60, 62, and 64, 66) for connecting to a current input and to a current output; and intermediate conductive elements such as blades (68, 70, et 72, 74) connected to the connection bars and to the casing. At least one of the mobile-contact elements includes a silver pellet fixed to the surface of the element, allowing the contact resistance between the mobile-contact element and the fixed-contact element to be reduced by half.