Abstract:
A matrix arrangement stacked-type solid electrolytic capacitor package structure includes a lead frame component, a plurality of capacitor units, and a package unit. The lead frame component includes a plurality of conductive holders arranged in matrix arrangement and a connection frame connected to the conductive holders. Each conductive holder includes a first conductive terminal and a second conductive terminal. The capacitor units are respectively disposed on the conductive holders. Each capacitor unit includes a plurality of first stacked-type capacitors sequentially stacked on top of one another and electrically connected with each other. Each first stacked-type capacitor has a first positive portion electrically connected to the first conductive terminal of the corresponding conductive holder and a first negative portion electrically connected to the second conductive terminal of the corresponding conductive holder. The package unit includes a plurality of package resin bodies for respectively enclosing the capacitor units.
Abstract:
A solid electrolytic capacitor package structure includes a capacitor unit, a package unit and a conductive unit. The package unit includes a package body for enclosing the capacitor unit. The conductive unit includes at least one first conductive terminal and at least one second conductive terminal. The first conductive terminal includes a first core layer and a first enclosing layer. The first core layer has a first top exposed surface exposed from the first enclosing layer, and the first top exposed surface has a first top covering area covered by the package body. The second conductive terminal includes a second core layer and a second enclosing layer. The second core layer has a second top exposed surface exposed from the second enclosing layer, and the second top exposed surface has a second top covering area covered by the package body.
Abstract:
A stacked-type solid electrolytic capacitor package structure includes a capacitor unit, a package unit, and a conductive unit. The capacitor unit includes a plurality of first stacked-type capacitors sequentially stacked on top of one another, and each first stacked-type capacitor has a first positive portion and a first negative portion. The package unit includes a package resin body for enclosing the capacitor unit. The conductive unit includes a first conductive terminal and a second conductive terminal. The first conductive terminal has a first embedded portion and a first exposed portion, and the second conductive terminal has a second embedded portion and a second exposed portion. An outermost one of first stacked-type capacitors has a plurality of first exposed soldering microgrooves formed on an outer surface thereof for contacting the package resin body. The instant disclosure further provides a method of manufacturing a stacked-type solid electrolytic capacitor package structure.
Abstract:
The instant disclosure relates to a solid electrolytic capacitor with improved metallic anode and a method for manufacturing the same. The solid electrolytic capacitor includes a substrate layer, a conductive polymer layer and an electrode layer. The substrate layer has a cathode portion and an anode portion having a smaller thickness than the cathode portion. The conductive polymer layer is formed to cover the cathode portion of the substrate layer. The electrode layer is formed to cover the conductive polymer layer. Therefore, the instant solid electrolytic capacitor can be applied to a packing process, and welding success yield rate can be improved.
Abstract:
The instant disclosure relates to a method for making solid electrolytic capacitor package structure with improved conductive terminals. The first step is to provide at least one conductive terminal having an electrical contact portion and a lead-out portion. The next step is to remove a portion of mantle layer from the surface of the core layer of at least one conductive terminal by a dry-type process. The next step is to sequentially stack together a plurality of stacked-type capacitors to form a capacitor unit and then electrically connect the capacitor unit to at least one conductive terminal. The next step is to form a package body to encapsulate the capacitor unit and the electrical contact portion of at least one conductive terminal. The last step is to bend the lead-out portion of at least one conductive terminal to an axis that extends along the surface of the package body.
Abstract:
A stacked-type solid electrolytic capacitor package structure includes a capacitor unit, a package unit and a conductive unit. The conductive unit includes a plurality of stacked-type capacitors stacked on top of one another and electrically connected with each other, and each stacked-type capacitor has a positive portion and a negative portion. The package unit includes a package body for enclosing the capacitor unit. The conductive unit includes a first conductive terminal and a second conductive terminal. The first conductive terminal has a first embedded portion electrically connected to the positive portion and enclosed by the package body and a first lateral exposed portion connected to the first embedded portion. The second conductive terminal has a second lateral exposed portion, a second front exposed portion, a second rear exposed portion, and a second embedded portion electrically connected to the negative portion and enclosed by the package body.
Abstract:
The present invention provides a capacitor unit with high-energy storage which includes an electrolyte, a positive electrode, and a negative electrode. The electrolyte includes an electrically conductive polymer composition. The positive and negative electrodes are arranged in the electrolyte. The positive electrode includes a substrate and a transition metal oxide layer formed on the substrate, resulting in the highest possible capacitance density.
Abstract:
A solid electrolytic capacitor package structure for decreasing equivalent series resistance (ESR), includes a capacitor unit, a package unit and a conductive unit. The capacitor unit includes a plurality of first stacked-type capacitors sequentially stacked on top of one another and electrically connected with each other. The package unit includes a package body for enclosing the capacitor unit. The conductive unit includes a first conductive terminal and a second conductive terminal having a through hole, and the stacked-type capacitors are electrically connected between the first and the second conductive terminals. The bottommost first stacked-type capacitor is positioned on the top surface of the second conductive terminal through conductive paste that has a first conductive portion disposed between the bottommost first stacked-type capacitors and the top surface of the second conductive terminal and a second conductive portion filling in the through groove to connect with the first conductive portion.