Abstract:
An electronic circuit is disclosed. A first flip-flop is coupled to receive a clock signal from clock gating circuit. The first flip-flop includes an input circuit having a data input, a master-slave latch, and an output circuit. Responsive to an edge of the clock signal, the master-slave latch may latch a logic value of a signal received on the data input. The output circuit is coupled to the master-slave latch, and provides a logic output signal corresponding to the logic value latched by the master-slave latch. The clock gating circuit may provide one or more inversions of the clock signal which it receives. The flip-flop provides no inversions of the clock signal.
Abstract:
A semiconductor device includes a channel strain altering material formed over or in the source and drain regions of the device. The channel strain altering material may be used to alter the strain in a channel region of the device after manufacturing of the device (e.g., after the device is formed or during operable use of the device). Changes in one or more of material properties of the channel strain altering material may be used to change the strain in the channel region. Changes in the material properties of the channel strain altering material may change a physical size or structure of the channel strain altering material. The channel strain altering material may include materials such as phase change materials or ferromagnetic materials.
Abstract:
A clock gating circuit is disclosed. The clock gating circuit includes an input circuit configured to receive an enable signal and clock enable circuitry configured to receive an input clock signal. The clock gating circuit also includes a latch that captures and stores an enabled state of the enable signal when the enable signal is asserted. An output circuit is coupled to the latch, and provides an output signal corresponding to a state of the clock signal when the latch is storing the enabled state. The clock gating circuit is arranged such that, when the latch is not storing the enabled state, no dynamic power is consumed responsive to state changes of the input clock signal.
Abstract:
Embodiments of a latch circuit are disclosed that may allow a reduction in storage time of data into the latch circuit. The latch circuit may include an input circuit, a first switch, a second switch, an input circuit, and an inverting amplifier. An input of the inverting amplifier may be coupled to a storage node, and an output of the inverting amplifier may be coupled to a feedback node. The input circuit may be configured to generate buffered and complement data dependent upon received data, and the switched may be configured to allow the generated buffered data to be transferred to the feedback node, and the complement data to be transferred to the storage node.