-
公开(公告)号:US20210254222A1
公开(公告)日:2021-08-19
申请号:US17313847
申请日:2021-05-06
Applicant: Applied Materials, Inc.
Inventor: David BRITZ , Pravin K. NARWANKAR , David THOMPSON , Yuriy MELNIK , Sukti CHATTERJEE
IPC: C23C28/00 , F01D5/28 , F01D5/18 , C23C16/455
Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof and can have a thickness from 1 nm to 3,000 nm.
-
公开(公告)号:US20210254223A1
公开(公告)日:2021-08-19
申请号:US17313863
申请日:2021-05-06
Applicant: Applied Materials, Inc.
Inventor: David BRITZ , Pravin K. NARWANKAR , David THOMPSON , Yuriy MELNIK , Sukti CHATTERJEE
IPC: C23C28/00 , F01D5/28 , F01D5/18 , C23C16/455
Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof.
-
公开(公告)号:US20210156789A1
公开(公告)日:2021-05-27
申请号:US16690576
申请日:2019-11-21
Applicant: APPLIED MATERIALS, INC.
Inventor: Gang Grant PENG , Robert Douglas MIKKOLA , David BRITZ , Lance SCUDDER , David W. GROECHEL
Abstract: A method for detecting corrosion on a conductive object includes submerging a surface of the conductive object at least partially in an aqueous solution, flowing current through the surface of the conductive object by forming a voltage differential across the surface, varying the voltage differential across the surface while monitoring the current through the surface of the conductive object, determining a total charge corresponding to a corrosion level of the surface of the conductive object based on current versus voltage levels. The corrosion level may further be utilized in selecting a cleaning process to remediate the corrosion of the surface based on the corrosion level and in applying a protective corrosion barrier to on at least part of the surface after the cleaning process.
-
公开(公告)号:US20210262099A1
公开(公告)日:2021-08-26
申请号:US17313858
申请日:2021-05-06
Applicant: Applied Materials, Inc.
Inventor: David BRITZ , Pravin K. NARWANKAR , David THOMPSON , Yuriy MELNIK , Sukti CHATTERJEE
IPC: C23C28/00 , F01D5/28 , F01D5/18 , C23C16/455
Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof.
-
公开(公告)号:US20190330746A1
公开(公告)日:2019-10-31
申请号:US16283567
申请日:2019-02-22
Applicant: Applied Materials, Inc.
Inventor: David BRITZ , Pravin K. NARWANKAR , David THOMPSON , Yuriy MELNIK , Sukti CHATTERJEE
Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof, and is from 1 nm to 3 microns in thickness.
-
-
-
-