Abstract:
Embodiments of the present invention are directed to a method and apparatus for block based image compression with multiple non-uniform block encodings. In one embodiment, an image is divided into blocks of pixels. In one embodiment the blocks are four pixels by four pixels, but other block sizes are used in other embodiments. In one embodiment, a block of pixels in the original image is compressed using two different methods to produce a first and second compressed block. Thus, each block in the original image is represented by two, typically different, compressed blocks. In one embodiment, color associated with a pixel is determined by combining the compressed information about the pixel in the first compressed block with information about the pixel in the second compressed block. In another embodiment, global information about the image is combined with the information in the first and second compressed blocks.
Abstract:
A processor uses the same virtual address space for heterogeneous processing units of the processor. The processor employs different sets of page tables for different types of processing units, such as a CPU and a GPU, wherein a memory management unit uses each set of page tables to translate virtual addresses of the virtual address space to corresponding physical addresses of memory modules associated with the processor. As data is migrated between memory modules, the physical addresses in the page tables can be updated to reflect the physical location of the data for each processing unit.
Abstract:
Embodiments of the present invention are directed to a method and apparatus for block based image compression with multiple non-uniform block encodings. In one embodiment, an image is divided into blocks of pixels. In one embodiment the blocks are four pixels by four pixels, but other block sizes are used in other embodiments. In one embodiment, a block of pixels in the original image is compressed using two different methods to produce a first and second compressed block. Thus, each block in the original image is represented by two, typically different, compressed blocks. In one embodiment, color associated with a pixel is determined by combining the compressed information about the pixel in the first compressed block with information about the pixel in the second compressed block. In another embodiment, global information about the image is combined with the information in the first and second compressed blocks.
Abstract:
The systems and methods include multiple processors that each couple to receive commands and data, where the commands and/or data correspond to frames of video that include multiple pixels. Additionally, an interlink module is coupled to receive processed data corresponding to the frames from each of the multiple processors. The interlink module selects pixels of the frames from the processed data of one of the processors based on a predetermined pixel characteristic and outputs the frames that include the selected pixels.
Abstract:
A processor uses the same virtual address space for heterogeneous processing units of the processor. The processor employs different sets of page tables for different types of processing units, such as a CPU and a GPU, wherein a memory management unit uses each set of page tables to translate virtual addresses of the virtual address space to corresponding physical addresses of memory modules associated with the processor. As data is migrated between memory modules, the physical addresses in the page tables can be updated to reflect the physical location of the data for each processing unit.