Abstract:
A touch panel including a substrate, at least one first sensing series and at least one second sensing series is provided. The first sensing series is disposed on the substrate and extends along a first direction. The first sensing series includes several first sensing pads and at least one first bridge line. The first bridge line connects two adjacent first sensing pads, and a material of the first bridge line differs from a material of the first sensing pads. The second sensing series is disposed on the substrate and extends along a second direction. The first direction is different from the second direction. The second sensing series includes several second sensing pads and at least one second bridge line. The second bridge line connects two adjacent second sensing pads.
Abstract:
A capacitive touch panel and a display device using the capacitive touch panel are provided. The capacitive touch panel includes a first electrode layer, a second electrode layer, and a dielectric layer disposed between two layers. The first electrode layer has a plurality of first A electrode strings and first B electrode strings extended along a first direction. The first A electrode string and the first B electrode string respectively has a plurality of first direction electrodes. The second electrode layer has a plurality of second direction electrodes connected in series along a second direction. The first A and B electrode strings are disconnected in the first electrode layer while they are simultaneously detected for presence of signal variation.
Abstract:
The present invention provides a touch panel used in a display device. The touch panel of the present invention is configured to display images and to receive as well as to process instructions inputted by user's touches. A display substrate partially overlaps with an image driving circuit substrate of the touch panel. A touch sensing circuit is disposed on the inner side of the display substrate. A touch sensing processor is disposed on the inner side of a touch sensing circuit and is also electrically coupled to the touch sensing circuit. Consequently, the thickness of the touch panel as well as the overall thickness of the display device is reduced.
Abstract:
A touch panel including a substrate, at least one first sensing series and at least one second sensing series is provided. The first sensing series is disposed on the substrate and extends along a first direction. The first sensing series includes several first sensing pads and at least one first bridge line. The first bridge line connects two adjacent first sensing pads, and a material of the first bridge line differs from a material of the first sensing pads. The second sensing series is disposed on the substrate and extends along a second direction. The first direction is different from the second direction. The second sensing series includes several second sensing pads and at least one second bridge line. The second bridge line connects two adjacent second sensing pads.
Abstract:
A pixel driving circuit includes a driving unit receiving a first control signal via a first control end, and the driving unit is biased according to the first control signal to provide a driving current to a light emitting element. One end of a capacitor is connected to a second control end of the driving unit, and the other end of the capacitor is connected to a first end or a second end of the driving unit. A compensation unit receives a second control signal via a first control end, and the compensation unit is biased according to the second control signal. A first switch unit receives a third control signal via a control end, and thereby the first switch unit is turned on. A second switch unit receives a fourth control signal via a control end, and thereby the second switch unit is turned on. A third switch unit receives a third control signal or a fourth control signal via a control end, and thereby the third switch uni
Abstract:
A touch panel and a manufacturing method thereof are provided. The touch panel has a double-layered sensing pad structure or a single-layered sensing pad structure. In the double-layered sensing pad structure, the sensing pads in each layer have corresponding dummy sensing pads in the other layer for compensating the difference of transmittance. In the single-layered sensing pad structure, the sensing pads are coplanar so that the problem of color shift can be overcome and the visual effect of the touch panel can be improved.
Abstract:
A capacitive touch panel and a display device using the capacitive touch panel are provided. The capacitive touch panel includes a first electrode layer, a second electrode layer, and a dielectric layer disposed between two layers. The first electrode layer has a plurality of first A electrode strings and first B electrode strings extended along a first direction. The first A electrode string and the first B electrode string respectively has a plurality of first direction electrodes. The second electrode layer has a plurality of second direction electrodes connected in series along a second direction. The first A and B electrode strings are disconnected in the first electrode layer while they are simultaneously detected for presence of signal variation.
Abstract:
The present invention provides a touch panel used in a display device. The touch panel of the present invention is configured to display images and to receive as well as to process instructions inputted by user's touches. A display substrate partially overlaps with an image driving circuit substrate of the touch panel. A touch sensing circuit is disposed on the inner side of the display substrate. A touch sensing processor is disposed on the inner side of a touch sensing circuit and is also electrically coupled to the touch sensing circuit. Consequently, the thickness of the touch panel as well as the overall thickness of the display device is reduced.
Abstract:
A touch panel and a manufacturing method thereof are provided. The touch panel has a double-layered sensing pad structure or a single-layered sensing pad structure. In the double-layered sensing pad structure, the sensing pads in each layer have corresponding dummy sensing pads in the other layer for compensating the difference of transmittance. In the single-layered sensing pad structure, the sensing pads are coplanar so that the problem of color shift can be overcome and the visual effect of the touch panel can be improved.