Abstract:
The present invention is directed to an apparatus and method for coring a borehole in a hard rock sidewall of a well bore in a subterranean formation for testing purposes. The apparatus includes a drive motor for operation down hole, a flexible drive shaft coupled to the drive motor and a coring bit coupled to the flexible drive shaft, such that the coring bit is directly driven by the drive motor. The apparatus also includes a control circuit for controlling advancement of the coring bit into the subterranean formation. The apparatus also includes a rotating carousel for storing multiple core samples. The method includes the steps of activating the drive motor to rotate the output shaft; coupling the output shaft of the drive motor to the flexible drive shaft and rotating the coring bit with the flexible drive shaft.
Abstract:
The present invention is directed to an apparatus and method for coring a borehole in a hard rock sidewall of a well bore in a subterranean formation for testing purposes. The apparatus includes a drive motor for operation down hole, a flexible drive shaft coupled to the drive motor and a coring bit coupled to the flexible drive shaft, such that the coring bit is directly driven by the drive motor. The apparatus also includes a control circuit for controlling advancement of the coring bit into the subterranean formation. The apparatus also includes a rotating carousel for storing multiple core samples. The method includes the steps of activating the drive motor to rotate the output shaft; coupling the output shaft of the drive motor to the flexible drive shaft and rotating the coring bit with the flexible drive shaft.
Abstract:
The acoustic isolator assembly of the present invention comprises a elongated cylindrical body suited for connection to an acoustic array and subsequent disposition within a wellbore. According to one embodiment of the present invention, the acoustic isolator comprises a plurality of cylindrical isolator modules that are coaxially arranged to form the body of the tool. Each isolator module comprises a spring disposed within an outer housing. The separate isolator modules are attached to one another by connecting rods around which are disposed a plurality of metal spacers. The isolator module further comprises mechanical stops that limit the deflection of the spring during high axial loading. These features enable the acoustic isolator assembly to withstand the high loading that may be applied during logging operations. Therefore, the isolator modules are capable of supporting high compressive and tensile loads without suffering permanent deformation of the springs.
Abstract:
An acoustic attenuator assembly for an acoustic tool for performing acoustic investigation of a subterranean formation is disclosed. The acoustic attenuator assembly includes a first end portion (205) and a second end portion (210) having a bore therethough to enable passage of an electrical line. The acoustic attenuator assembly further includes a fiber portion (230) disposed between the first and second end portion so that the fiber portion attenuates at least a portion of acoustic energy when the acoustic energy is received by one or both of the first (205) and second (210) end portions. The fiber portion (230) includes a continuous flexible portion that allows relative deflection of the first (205) and second (210) end portions.
Abstract:
A method and system for conducting a seismic survey by lowering a string of intelligent clampable sensor pods with 3-C sensors into a borehole. The string of pods is serially interconnected by a cable having a conductor pair which provides both power and data connectivity. The uppermost sensor pod is connected to a downhole telemetry and control module. The cables and pods use connectors to allow assembly, customization, repair, and disassembly on site. Each pod has an upper and a lower connector, a processor, and memory which is coupled to both the upper and the lower connectors. Each pod is capable of simultaneous and independent serial communications at each connector with the memory. The telemetry and control module is designed to query the pods to determine the system configuration. The telemetry and control module then simultaneously triggers all pods to acquire data, the pods storing the collected data locally in the memory. After data collection, the controller simultaneously signals the pods to immediately transfer data serially from the local memory to the next higher adjacent pod and receive data, if any, from the lower adjacent pod, if any, storing the received data in memory. The first data transferred from each pod is that data collected by its local sensors. Subsequent data originates from lower pods and is simply passed up the string of pods to the telemetry and control module. In other words, the pods communicate in a bucket brigade fashion.
Abstract:
An acoustic logging tool, useful for creating a circumferential image of an earth borehole or well casing, which includes one or many acoustic transceivers mounted in substantially the same plane, in a drill string sub. The mounting receptacles are located in blocks, flexibly mounted in fixed inserts within the interior of the drill string sub. Each of the transceivers is structured to provide temperature and pressure compensation. The echo signals received by the transceivers are digitized and processed to eliminate extraneous noise created by the ringing of the transducers, by the signals reflected from the material backing the transducer ultrasonic element, and by any other sources inherent to the drilling environment. Digitization and further processing also allows for signal enhancement, thus allowing detection of signals in the presence of substantial noise. Temperature and pressure determinations are used to correct the acoustic velocity of the waves passing through the drilling fluid, "on-the-fly", as the drilling process continues.
Abstract:
The artificial lift system comprises a downhole tool suspended by a power conductive cable in a wellbore. The downhole tool comprises an atomizing chamber for conversion of the liquid into droplets having an average diameter less than or equal to 10,000 microns. Natural gas produced by a producing zone of the subterranean reservoir transports the vaporized liquid molecules to the well surface. In operation, the atomizing chamber is located above the liquid column in the wellbore.
Abstract:
An acoustic attenuator assembly for an acoustic tool for performing acoustic investigation of a subterranean formation is disclosed. The acoustic attenuator assembly includes a first end portion (205) and a second end portion (215) having a bore therethrough to enable passage of an electrical line. The acoustic attenuator assembly further includes a fiber portion (230) disposed between the first and second end portion so that the fiber portion attenuates at least a portion of acoustic energy when the acoustic energy is received by one or both of the first (205) and second (215) end portions.
Abstract:
A method and system for conducting a seismic survey by lowering a string of intelligent clampable sensor pods with 3-C sensors into a borehole. The string of pods is serially interconnected by a cable having a conductor pair which provides both power and data connectivity. The uppermost sensor pod is connected to a downhole telemetry and control module. The cables and pods use connectors to allow assembly, customization, repair, and disassembly on site. Each pod has an upper and a lower connector, a processor, and memory which is coupled to both the upper and the lower connectors. Each pod is capable of simultaneous and independent serial communications at each connector with the memory. The telemetry and control module is designed to query the pods to determine the system configuration. The telemetry and control module then simultaneously triggers all pods to acquire data, the pods storing the collected data locally in the memory. After data collection, the controller simultaneously signals the pods to immediately transfer data serially from the local memory to the next higher adjacent pod and receive data, if any, from the lower adjacent pod, if any, storing the received data in memory. The first data transferred from each pod is that data collected by its local sensors. Subsequent data originates from lower pods and is simply passed up the string of pods to the telemetry and control module. In other words, the pods communicate in a bucket brigade fashion.
Abstract:
An attenuation apparatus, system, and method are disclosed. The attenuator is attached to a pipe and includes a housing that includes an inner sleeve and an outer sleeve. The attenuator includes one or more masses, to resonate when exposed to waves including acoustic frequency components.