Abstract:
Laser machining polymer tubing sections to form stents such that the quality and dimensions of stents from the different tubing sections are sensitive to the laser power is disclosed. The average power of the laser machining is the same for each tubing section which yields stents with different quality and strut widths.
Abstract:
The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
Abstract:
An endoprosthesis is made by radially expanding and axially extending a polymer tube. Next, portions of the polymer tube are removed to form an open framework of struts that define a tubular body. The tubular body has an end segment and an intermediate segment adjoining the end segment. The end segment includes a circumferential series of closed cells having a first W-shape closed cell. The intermediate segment includes a circumferential series of closed cells having a second W-shape closed cell. There are linear link struts at opposite ends of the individual first and second W-shape closed cells. The linear link struts of the first W-shape closed cell are longer than linear link struts of the second W-shape closed cell.
Abstract:
The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
Abstract:
The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
Abstract:
The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.
Abstract:
The present invention involves laser machining polymer substrates to form a stent with laser parameters that minimize damage to the substrate in a surface region adjacent to the machined edge surface. The wavelength and pulse width are selected for this unique application and they can be controlled to minimize the surface modifications (such as voids, cracks which are induced by the laser-material interaction) which contribute to the variation in mechanical properties with distance from the edge surface, bulk mechanical properties, or a combination thereof.