-
公开(公告)号:US11188579B2
公开(公告)日:2021-11-30
申请号:US16377424
申请日:2019-04-08
Applicant: ADOBE INC.
Inventor: Dheeraj Bansal , Sukriti Verma , Pratiksha Agarwal , Piyush Gupta , Nikaash Puri , Vishal Wani , Balaji Krishnamurthy
IPC: G06F16/00 , G06F16/332 , G06F16/58 , G06F16/535 , G06N20/20 , G06N3/08
Abstract: Systems and methods are described for serving personalized content using content tagging and transfer learning. The method may include identifying content elements in an experience pool, where each of the content element is associated with one or more attribute tags, identifying a user profile comprising characteristics of a user, generating a set of user-tag affinity vectors based on the user profile and the corresponding attribute tags using a content personalization engine, generating a user-content affinity score based on the set of user-tag affinity vectors, selecting a content element from the plurality of content elements based on the corresponding user-content affinity score, and delivering the selected content element to the user.
-
公开(公告)号:US20200320112A1
公开(公告)日:2020-10-08
申请号:US16377424
申请日:2019-04-08
Applicant: Adobe Inc.
Inventor: Dheeraj Bansal , Sukriti Verma , Pratiksha Agarwal , Piyush Gupta , Nikaash Puri , Vishal Wani , Balaji Krishnamurthy
IPC: G06F16/332 , G06F16/58 , G06N3/08 , G06N20/20 , G06F16/535
Abstract: Systems and methods are described for serving personalized content using content tagging and transfer learning. The method may include identifying content elements in an experience pool, where each of the content element is associated with one or more attribute tags, identifying a user profile comprising characteristics of a user, generating a set of user-tag affinity vectors based on the user profile and the corresponding attribute tags using a content personalization engine, generating a user-content affinity score based on the set of user-tag affinity vectors, selecting a content element from the plurality of content elements based on the corresponding user-content affinity score, and delivering the selected content element to the user.
-
公开(公告)号:US12008033B2
公开(公告)日:2024-06-11
申请号:US17447908
申请日:2021-09-16
Applicant: ADOBE INC.
Inventor: Yaman Kumar , Vinh Ngoc Khuc , Vijay Srivastava , Umang Moorarka , Sukriti Verma , Simra Shahid , Shirsh Bansal , Shankar Venkitachalam , Sean Steimer , Sandipan Karmakar , Nimish Srivastav , Nikaash Puri , Mihir Naware , Kunal Kumar Jain , Kumar Mrityunjay Singh , Hyman Chung , Horea Bacila , Florin Silviu Iordache , Deepak Pai , Balaji Krishnamurthy
IPC: G06F7/02 , G06F16/00 , G06F16/535 , G06F16/54 , G06F16/58 , G06F16/583 , G06N20/00
CPC classification number: G06F16/5866 , G06F16/535 , G06F16/54 , G06F16/583 , G06N20/00
Abstract: Methods, computer systems, computer-storage media, and graphical user interfaces are provided for determining user affinities by tracking historical user interactions with tagged digital content and using the user affinities in content generation applications. Accordingly, the system may track user interactions with published digital content in order to generate user interaction reports whenever a user engages with the digital content. The system may aggregate the interaction reports to generate an affinity profile for a user or audience of users. A marketer may then generate digital content for a target user or audience of users and the system may process the digital content to generate a set of tags for the digital content. Based on the set of tags, the system may then evaluate the digital content in view of the affinity profile for the target user/audience to determine similarities or differences between the digital content and the affinity profile.
-
公开(公告)号:US20190147369A1
公开(公告)日:2019-05-16
申请号:US15812991
申请日:2017-11-14
Applicant: Adobe Inc.
Inventor: Piyush Gupta , Sukriti Verma , Pratiksha Agarwal , Nikaash Puri , Balaji Krishnamurthy
Abstract: Rule determination for black-box machine-learning models (BBMLMs) is described. These rules are determined by an interpretation system to describe operation of a BBMLM to associate inputs to the BBMLM with observed outputs of the BBMLM and without knowledge of the logic used in operation by the BBMLM to make these associations. To determine these rules, the interpretation system initially generates a proxy black-box model to imitate the behavior of the BBMLM based solely on data indicative of the inputs and observed outputs—since the logic actually used is not available to the system. The interpretation system generates rules describing the operation of the BBMLM by combining conditions—identified based on output of the proxy black-box model—using a genetic algorithm. These rules are output as if-then statements configured with an if-portion formed as a list of the conditions and a then-portion having an indication of the associated observed output.
-
公开(公告)号:US12260480B2
公开(公告)日:2025-03-25
申请号:US18178791
申请日:2023-03-06
Applicant: Adobe Inc.
Inventor: Sukriti Verma , Venkata naveen kumar Yadav Marri , Ritiz Tambi , Pranav Vineet Aggarwal , Peter O'Donovan , Midhun Harikumar , Ajinkya Kale
IPC: G06T11/60 , G06F3/0482
Abstract: Embodiments are disclosed for machine learning-based generation of recommended layouts. The method includes receiving a set of design elements for performing generative layout recommendation. A number of each type of design element from the set of design elements is determined. A set of recommended layouts are generated using a trained generative layout model and the number and type of design elements. The set of recommended layouts are output.
-
公开(公告)号:US12205127B2
公开(公告)日:2025-01-21
申请号:US17232591
申请日:2021-04-16
Applicant: ADOBE INC.
Inventor: Sukriti Verma , Shripad Deshmukh , Jayakumar Subramanian , Piyush Gupta , Nikaash Puri
IPC: G06Q30/0201 , G06N3/047 , G06N3/08
Abstract: Interactions between a user and an e-commerce platform are automatically guided to increase the chances of a conversion. Previous sequences of interactions (e.g., conversion journeys and non-conversion journeys) with the e-commerce platform are collected, an artificial neural network (ANN) learns how to estimate a safety value a current user state by learning from previous user interactions (e.g., conversion and non-conversion journeys), a software agent of the e-commerce platform applies a current user state of the user to the ANN to determine a current safety value, and the software agent provides content to the user based on the current safety value and the current user state.
-
公开(公告)号:US20240289380A1
公开(公告)日:2024-08-29
申请号:US18656332
申请日:2024-05-06
Applicant: Adobe Inc.
Inventor: Yaman Kumar , Vinh Ngoc Khuc , Vijay Srivastava , Umang Moorarka , Sukriti Verma , Simra Shahid , Shirsh Bansal , Shankar Venkitachalam , Sean Steimer , Sandipan Karmakar , Nimish Srivastav , Nikaash Puri , Mihir Naware , Kunal Kumar Jain , Kumar Mrityunjay Singh , Hyman Chung , Horea Bacila , Florin Silviu Lordache , Deepak Pai , Balaji Krishnamurthy
IPC: G06F16/58 , G06F16/535 , G06F16/54 , G06F16/583 , G06N20/00
CPC classification number: G06F16/5866 , G06F16/535 , G06F16/54 , G06F16/583 , G06N20/00
Abstract: Methods, computer systems, computer-storage media, and graphical user interfaces are provided for determining user affinities by tracking historical user interactions with tagged digital content and using the user affinities in content generation applications. Accordingly, the system may track user interactions with published digital content in order to generate user interaction reports whenever a user engages with the digital content. The system may aggregate the interaction reports to generate an affinity profile for a user or audience of users. A marketer may then generate digital content for a target user or audience of users and the system may process the digital content to generate a set of tags for the digital content. Based on the set of tags, the system may then evaluate the digital content in view of the affinity profile for the target user/audience to determine similarities or differences between the digital content and the affinity profile.
-
公开(公告)号:US20230085466A1
公开(公告)日:2023-03-16
申请号:US17447908
申请日:2021-09-16
Applicant: ADOBE INC.
Inventor: Yaman Kumar , Vinh Ngoc Khuc , Vijay Srivastava , Umang Moorarka , Sukriti Verma , Simra Shahid , Shirsh Bansal , Shankar Venkitachalam , Sean Steimer , Sandipan Karmakar , Nimish Srivastav , Nikaash Puri , Mihir Naware , Kunal Kumar Jain , Kumar Mrityunjay Singh , Hyman Chung , Horea Bacila , Florin Silviu Iordache , Deepak Pai , Balaji Krishnamurthy
IPC: G06F16/58 , G06N20/00 , G06F16/535 , G06F16/583 , G06F16/54
Abstract: Methods, computer systems, computer-storage media, and graphical user interfaces are provided for determining user affinities by tracking historical user interactions with tagged digital content and using the user affinities in content generation applications. Accordingly, the system may track user interactions with published digital content in order to generate user interaction reports whenever a user engages with the digital content. The system may aggregate the interaction reports to generate an affinity profile for a user or audience of users. A marketer may then generate digital content for a target user or audience of users and the system may process the digital content to generate a set of tags for the digital content. Based on the set of tags, the system may then evaluate the digital content in view of the affinity profile for the target user/audience to determine similarities or differences between the digital content and the affinity profile.
-
公开(公告)号:US20220335508A1
公开(公告)日:2022-10-20
申请号:US17232591
申请日:2021-04-16
Applicant: ADOBE INC.
Inventor: Sukriti Verma , Shripad Deshmukh , Jayakumar Subramanian , Piyush Gupta , Nikaash Puri
Abstract: Interactions between a user and an e-commerce platform are automatically guided to increase the chances of a conversion. Previous sequences of interactions (e.g., conversion journeys and non-conversion journeys) with the e-commerce platform are collected, an artificial neural network (ANN) learns how to estimate a safety value a current user state by learning from previous user interactions (e.g., conversion and non-conversion journeys), a software agent of the e-commerce platform applies a current user state of the user to the ANN to determine a current safety value, and the software agent provides content to the user based on the current safety value and the current user state.
-
公开(公告)号:US11354590B2
公开(公告)日:2022-06-07
申请号:US15812991
申请日:2017-11-14
Applicant: Adobe Inc.
Inventor: Piyush Gupta , Sukriti Verma , Pratiksha Agarwal , Nikaash Puri , Balaji Krishnamurthy
Abstract: Rule determination for black-box machine-learning models (BBMLMs) is described. These rules are determined by an interpretation system to describe operation of a BBMLM to associate inputs to the BBMLM with observed outputs of the BBMLM and without knowledge of the logic used in operation by the BBMLM to make these associations. To determine these rules, the interpretation system initially generates a proxy black-box model to imitate the behavior of the BBMLM based solely on data indicative of the inputs and observed outputs—since the logic actually used is not available to the system. The interpretation system generates rules describing the operation of the BBMLM by combining conditions—identified based on output of the proxy black-box model—using a genetic algorithm. These rules are output as if-then statements configured with an if-portion formed as a list of the conditions and a then-portion having an indication of the associated observed output.
-
-
-
-
-
-
-
-
-