-
公开(公告)号:US20240386627A1
公开(公告)日:2024-11-21
申请号:US18319808
申请日:2023-05-18
Applicant: Adobe Inc.
Inventor: Ambareesh Revanur , Debraj Debashish Basu , Shradha Agrawal , Dhwanit Agarwal , Deepak Pai
Abstract: In accordance with the described techniques, an image transformation system receives an input image and a text prompt, and leverages a generator network to edit the input image based on the text prompt. The generator network includes a plurality of layers configured to perform respective edits. A plurality of masks are generated based on the text prompt that define local edit regions, respectively, of the input image for respective layers of the generator network. Further, the generator network generates an edited image by editing the input image based on the plurality of masks, the respective edits of the respective layers, and the text prompt.
-
公开(公告)号:US12008033B2
公开(公告)日:2024-06-11
申请号:US17447908
申请日:2021-09-16
Applicant: ADOBE INC.
Inventor: Yaman Kumar , Vinh Ngoc Khuc , Vijay Srivastava , Umang Moorarka , Sukriti Verma , Simra Shahid , Shirsh Bansal , Shankar Venkitachalam , Sean Steimer , Sandipan Karmakar , Nimish Srivastav , Nikaash Puri , Mihir Naware , Kunal Kumar Jain , Kumar Mrityunjay Singh , Hyman Chung , Horea Bacila , Florin Silviu Iordache , Deepak Pai , Balaji Krishnamurthy
IPC: G06F7/02 , G06F16/00 , G06F16/535 , G06F16/54 , G06F16/58 , G06F16/583 , G06N20/00
CPC classification number: G06F16/5866 , G06F16/535 , G06F16/54 , G06F16/583 , G06N20/00
Abstract: Methods, computer systems, computer-storage media, and graphical user interfaces are provided for determining user affinities by tracking historical user interactions with tagged digital content and using the user affinities in content generation applications. Accordingly, the system may track user interactions with published digital content in order to generate user interaction reports whenever a user engages with the digital content. The system may aggregate the interaction reports to generate an affinity profile for a user or audience of users. A marketer may then generate digital content for a target user or audience of users and the system may process the digital content to generate a set of tags for the digital content. Based on the set of tags, the system may then evaluate the digital content in view of the affinity profile for the target user/audience to determine similarities or differences between the digital content and the affinity profile.
-
公开(公告)号:US10997634B2
公开(公告)日:2021-05-04
申请号:US16695562
申请日:2019-11-26
Applicant: Adobe Inc.
Inventor: Deepak Pai , Trung Nguyen , Sy Bor Wang , Jose Mathew , Abhishek Pani , Neha Gupta
IPC: G06Q30/02
Abstract: Systems and methods are disclosed herein for distributing online ads with electronic content according to online ad request targeting parameters. One embodiment of this technique involves placing online test ads across multiple online ad request dimensions and tracking a performance metric for the online test ads. The performance of the online ad request dimensions is estimated based on the tracking of the performance metric for the online test ads and online ad request targeting parameters are established for spending a budget of a campaign to place online ads in response to online ad requests having particular online ad request dimensions. Online ads are then distributed based on using the online ad request targeting parameters to select online ad requests.
-
公开(公告)号:US10650403B2
公开(公告)日:2020-05-12
申请号:US15264053
申请日:2016-09-13
Applicant: ADOBE INC.
Inventor: Deepak Pai , Anil Kamath
Abstract: Techniques for distributing online ads by targeting online ad requests using test data to predict performance. The techniques can target ad requests in automated online advertising systems in which ad requests are generated by an ad exchange server and bids are placed by marketer devices in real time. The techniques aggregate bid units and compare bid unit characteristics to select bid units to target in ways that address data sparsity, variance, and volume issues. Data sparsity issues are addressed by aggregating bid units to avoid using bid units having insufficient data. Data variance issues are addressed by computing stability metrics for bid units that enable discounting the effect of outliers. Data volume and processing efficiency issues are addressed by grouping similar bid units based on similar metrics (e.g., normalized ROI) and/or similar stability scores, and then ranking the bid units and selecting the top ranked bid units to target.
-
公开(公告)号:US20240289380A1
公开(公告)日:2024-08-29
申请号:US18656332
申请日:2024-05-06
Applicant: Adobe Inc.
Inventor: Yaman Kumar , Vinh Ngoc Khuc , Vijay Srivastava , Umang Moorarka , Sukriti Verma , Simra Shahid , Shirsh Bansal , Shankar Venkitachalam , Sean Steimer , Sandipan Karmakar , Nimish Srivastav , Nikaash Puri , Mihir Naware , Kunal Kumar Jain , Kumar Mrityunjay Singh , Hyman Chung , Horea Bacila , Florin Silviu Lordache , Deepak Pai , Balaji Krishnamurthy
IPC: G06F16/58 , G06F16/535 , G06F16/54 , G06F16/583 , G06N20/00
CPC classification number: G06F16/5866 , G06F16/535 , G06F16/54 , G06F16/583 , G06N20/00
Abstract: Methods, computer systems, computer-storage media, and graphical user interfaces are provided for determining user affinities by tracking historical user interactions with tagged digital content and using the user affinities in content generation applications. Accordingly, the system may track user interactions with published digital content in order to generate user interaction reports whenever a user engages with the digital content. The system may aggregate the interaction reports to generate an affinity profile for a user or audience of users. A marketer may then generate digital content for a target user or audience of users and the system may process the digital content to generate a set of tags for the digital content. Based on the set of tags, the system may then evaluate the digital content in view of the affinity profile for the target user/audience to determine similarities or differences between the digital content and the affinity profile.
-
公开(公告)号:US11775412B2
公开(公告)日:2023-10-03
申请号:US17703188
申请日:2022-03-24
Applicant: Adobe Inc.
Inventor: Meghanath M Y , Shankar Venkitachalam , Deepak Pai
CPC classification number: G06F11/3438 , G06F9/451 , G06N20/00
Abstract: In some embodiments, a computing system identifies a current engagement stage of a user with an online platform by applying a stage prediction model based on interaction data associated with the user. The interaction data describe actions performed by the user with respect to the online platform and context data associated with each of the actions. The computing system further identifies one or more critical events for promoting the user to transition from one engagement stage to a higher engagement stage based on the interaction data associated with the user. The computing system can make the identified current engagement stage of the user or the identified critical event to be accessible by the online platform so that user interfaces presented on the online platform can be modified to improve a likelihood of the user to transit from the current stage to a higher engagement stage.
-
公开(公告)号:US11610085B2
公开(公告)日:2023-03-21
申请号:US16289520
申请日:2019-02-28
Applicant: ADOBE INC.
Inventor: Deepak Pai , Debraj Debashish Basu , Joshua Alan Sweetkind-Singer
Abstract: In some examples, a prototype model that includes a representative subset of data points (e.g., inputs and output classifications) of a machine learning model is analyzed to efficiently interpret the machine learning model's behavior. Performance metrics such as a critic fraction, local explanation scores, and global explanation scores are determined. A local explanation score capture an importance of a feature of a test point to the machine learning model determining a particular class for the test point and is computed by comparing a value of a feature of a test point to values for prototypes of the prototype model. Using a similar approach, global explanation scores may be computed for features by combining local explanation scores for data points. A critic fraction may be computed to quantify a misclassification rate of the prototype model, indicating the interpretability of the model.
-
公开(公告)号:US20230085466A1
公开(公告)日:2023-03-16
申请号:US17447908
申请日:2021-09-16
Applicant: ADOBE INC.
Inventor: Yaman Kumar , Vinh Ngoc Khuc , Vijay Srivastava , Umang Moorarka , Sukriti Verma , Simra Shahid , Shirsh Bansal , Shankar Venkitachalam , Sean Steimer , Sandipan Karmakar , Nimish Srivastav , Nikaash Puri , Mihir Naware , Kunal Kumar Jain , Kumar Mrityunjay Singh , Hyman Chung , Horea Bacila , Florin Silviu Iordache , Deepak Pai , Balaji Krishnamurthy
IPC: G06F16/58 , G06N20/00 , G06F16/535 , G06F16/583 , G06F16/54
Abstract: Methods, computer systems, computer-storage media, and graphical user interfaces are provided for determining user affinities by tracking historical user interactions with tagged digital content and using the user affinities in content generation applications. Accordingly, the system may track user interactions with published digital content in order to generate user interaction reports whenever a user engages with the digital content. The system may aggregate the interaction reports to generate an affinity profile for a user or audience of users. A marketer may then generate digital content for a target user or audience of users and the system may process the digital content to generate a set of tags for the digital content. Based on the set of tags, the system may then evaluate the digital content in view of the affinity profile for the target user/audience to determine similarities or differences between the digital content and the affinity profile.
-
公开(公告)号:US20210233080A1
公开(公告)日:2021-07-29
申请号:US16751880
申请日:2020-01-24
Applicant: Adobe Inc.
Inventor: Shubhranshu Shekhar , Deepak Pai , Sriram Ravindran
Abstract: The present disclosure relates to utilizing a graph convolutional neural network to generate similarity probabilities between pairs of digital identities associated with digital transactions based on time dependencies for use in identifying fraudulent transactions. For example, the disclosed systems can generate a transaction graph that includes nodes corresponding to digital identities. The disclosed systems can utilize a time-dependent graph convolutional neural network to generate node embeddings for the nodes based on the edge connections of the transaction graph. Further, the disclosed systems can utilize the node embeddings to determine whether a digital identity is associated with a fraudulent transaction.
-
公开(公告)号:US20210142256A1
公开(公告)日:2021-05-13
申请号:US16681056
申请日:2019-11-12
Applicant: Adobe Inc.
Inventor: Meghanath M Y , Deepak Pai
Abstract: A user segmentation system is described that is configured to generate use segments and summarize user segments. In one example, the user segmentation system is configured to identify which attributes support a key performance indicator. This is used to generate rules that act as user segments of a user population. Further, the user segmentation system is configured to reduce overlap of user segments through summarization.
-
-
-
-
-
-
-
-
-