Abstract:
A catheter having a polymeric reinforcing member at a junction between shaft sections such as a rapid exchange catheter junction. The polymeric reinforcing member is around or within the tubular member defining the inflation lumen or the tubular member defining the guidewire lumen at the rapid exchange junction to prevent or inhibit damage to the tubular members defining the inflation lumen and/or guidewire lumen during assembly or use of a balloon catheter. In one embodiment, the polymeric reinforcing member is formed of a first polymeric material having a glass transition temperature greater than a glass transition temperature of a second polymeric material forming the distal portion of the proximal tubular member or the proximal portion of the inner tubular member. The first polymeric material forming the polymeric reinforcing member is preferably a high temperature, high modulus material, such as polyimide, and most preferably a thermoset polyimide.
Abstract:
A balloon catheter system generally having an elongated catheter shaft with enhanced flexibility to facilitate more distal advancement within a patient's body lumen. The catheter shaft has a relatively stiff proximal shaft section, a relatively flexible distal shaft section and an intermediate shaft section which provides a smooth, flexible transition between the proximal and distal shaft sections. The intermediate shaft section has an improved construction with a tubular reinforcing member secured by its proximal end to the distal extremity of the proximal shaft section and a distal end secured within the proximal end of the distal shaft section. The tubular reinforcing member preferably has an inner tubular support member which has a proximal end secured to the distal end of the proximal shaft section. Preferably, the proximal shaft section has an outer jacket which extends over the tubular reinforcing member of the intermediate shaft section. Dual lumen and concentric distal shaft sections are describes. Additionally, over-the-wire constructions are described in which the inner and outer tubular members forming part of the distal shaft section extend the length of the catheter.
Abstract:
A method of sterilizing a medical device component, such as a catheter balloon, in which an electron beam (i.e., e-beam) is applied to the component in an evacuated or inert gas-filled container. The method of the invention allows for electron beam sterilization without significant degradation of the component polymeric material. In one embodiment, the device component is configured to be pressurized or expanded during use. The method of the invention provides a component with a rupture pressure that is not significantly decreased due to electron beam sterilization. Another aspect of the invention is a medical device component, e-beam sterilized according to a method of the invention. A variety of medical device components can be sterilized by the method of the invention, and particularly intracorporeal devices for therapeutic or diagnostic purposes, such as balloon catheters, catheter shafts and balloons, stent covers, and vascular grafts.
Abstract:
A balloon catheter having an improved maneuverability. The catheter includes an elongated catheter shaft with proximal and distal ends, proximal and distal shaft sections, a balloon on the distal catheter shaft section having proximal and distal shaft sections, a guidewire receiving lumen extending along at least a portion of the catheter shaft to the catheter shaft distal end, and a tip member on a distal end of the catheter. A proximal end of the tip member is spaced distally apart from the distal end of the catheter shaft and is in fluid communication therewith. The distal balloon shaft is sealingly secured to the catheter shaft and the tip member.