Abstract:
A polymer coating for medical devices based on a polyolefin derivative. A variety of polymers are described to make coatings for medical devices, particularly, for drug delivery stents. The polymers include homo-, co-, and terpolymers having at least one olefin-derived unit and at least one unit derived from vinyl alcohol, allyl alcohol and derivatives thereof.
Abstract:
Coatings for an implantable medical device and a method of fabricating thereof are disclosed, the coatings including block-polymers comprising at least one poly(hydroxyacid) or poly(hydroxy-alkanoate) block, at least one block of a biologically compatible polymer and at least one type of linking moiety.
Abstract:
With abluminal side of a stent masked, the luminal side of the stent is selectively coated with a substance, such as an anti-coagulant, a platelet inhibitor and/or a pro-healing substance. The stent can be masked by inserting it into a rigid mandrel chamber or by compressing a masking sleeve onto the outer side of the stent. A spray nozzle inserted into the masked stent spray coats the substance onto the luminal side. The sprayed coating can be cured onto the stent such as by inserting an electrical-resistance heater bar into the stent.
Abstract:
A stent delivery catheter system having a catheter with stent releasably mounted on a stent retention portion of the catheter for delivery and deployment within a patient's body lumen, and a method of mounting the stent on the stent retention portion of the catheter. The method generally includes exposing the stent retention portion and/or the stent to a solvent, the solvent being in the vapor phase. The vapor phase solvent typically softens the stent retention portion of the catheter, and/or, in one embodiment in which the stent has a coating on the stent body, the vapor phase solvent softens the stent coating. In a presently preferred embodiment, the stent polymeric coating has a therapeutic agent, and the method of the invention prevents or inhibits disadvantageously affecting the therapeutic agent coating during mounting of the stent on the catheter.
Abstract:
A stent with a coating including a composition that releases a therapeutic substance in response to an enzyme is disclosed. The composition includes a polymer or polypeptide that includes an amino acid sequence which is recognized and cleaved by at least one of the matrix metalloproteinases (MMP).
Abstract:
Methods for making coatings on an implantable device such as a drug-eluting stent comprising a polymer and nano or microparticles of a drug in slow-dissolving polymorph, implantable devices produced by the methods and methods of using the coatings are provided.
Abstract:
An expandable stent is implanted in a body lumen, such as a coronary artery, peripheral artery, or other body lumen for treating an area of vulnerable plaque. The invention provides for a an intravascular stent having a plurality of cylindrical rings connected by undulating links. The stent has a high degree of flexibility in the longitudinal direction, yet has adequate vessel wall coverage and radial strength sufficient to hold open an artery or other body lumen. A central section is positioned between distal and proximal sections and is aligned with the area of vulnerable plaque to enhance growth of endothelial cells over the fibrous cap of the vulnerable plaque to reinforce the area and reduce the likelihood of rupture.
Abstract:
An expandable stent is implanted in a body lumen, such as a coronary artery, peripheral artery, or other body lumen for treating an area of vulnerable plaque. The invention provides for a an intravascular stent having a plurality of cylindrical rings connected by undulating links. The stent has a high degree of flexibility in the longitudinal direction, yet has adequate vessel wall coverage and radial strength sufficient to hold open an artery or other body lumen. A central section is positioned between distal and proximal sections and is aligned with the area of vulnerable plaque to enhance growth of endothelial cells over the fibrous cap of the vulnerable plaque to reinforce the area and reduce the likelihood of rupture.
Abstract:
Medical devices or components thereof, and particularly intracorporeal devices for therapeutic or diagnostic uses, which are formed at least in part of a polymeric material and a ferromagnetic or paramagnetic material, so that the medical device or component thereof is visible on magnetic resonance imaging (MRI) scans. In one embodiment, the medical device is a balloon catheter having an MRI visible balloon. In a presently preferred embodiment, there is an insufficient amount of the ferromagnetic or paramagnetic material within a wall of the balloon or coated onto a wall of the balloon to make the balloon radiopaque.